Elipsoide de monge (1993)
- Author:
- USP affiliated author: TELLO, JORGE MANUEL SOTOMAYOR - IME
- School: IME
- Subject: GEOMETRIA DIFERENCIAL
- Language: Português
- Imprenta:
- Place of publication: Rio de Janeiro
- Date published: 1993
- Source:
- Título do periódico: Matematica Universitaria
- Volume/Número/Paginação/Ano: n.15, p.33-47, dez. 1993
-
ABNT
SOTOMAYOR, Jorge. Elipsoide de monge. Matematica Universitaria, Rio de Janeiro, n. 15, p. 33-47, 1993. Disponível em: < https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n15_Artigo04.pdf >. -
APA
Sotomayor, J. (1993). Elipsoide de monge. Matematica Universitaria, (15), 33-47. Recuperado de https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n15_Artigo04.pdf -
NLM
Sotomayor J. Elipsoide de monge [Internet]. Matematica Universitaria. 1993 ;(15): 33-47.Available from: https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n15_Artigo04.pdf -
Vancouver
Sotomayor J. Elipsoide de monge [Internet]. Matematica Universitaria. 1993 ;(15): 33-47.Available from: https://rmu.sbm.org.br/wp-content/uploads/sites/27/2018/03/n15_Artigo04.pdf - Lines of curvature on quadric hypersurfaces of ℝ4
- Surfaces around closed principal curvature lines, an inverse problem
- Tori embedded in R-3 with dense principal lines
- Structural stability of asymtotic lines on surfaces immersed in `R POT.3´
- Structurally stable configurations of lines of mean curvature and umbilic points on surfaces immersed
- An encounter of classical differential geometry with dynamical systems in the realm of structural stability of principal curvature configurations
- Axial Curvature Cycles of Surfaces Immersed in R4
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Umbilic singularities and lines of curvature on ellipsoids of ℝ4
- Axiumbilic singular points on surfaces immersed in R^4 and their generic bifurcations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas