A note on some developments on Carathéodory conjecture on umbilic points (1999)
- Authors:
- Autor USP: TELLO, JORGE MANUEL SOTOMAYOR - IME
- Unidade: IME
- Subjects: GEOMETRIA DIFERENCIAL; GEOMETRIA
- Language: Inglês
- Source:
- Título: Expositiones Mathematicae
- ISSN: 0723-0869
- Volume/Número/Paginação/Ano: v. 17, n. 1, p. 49-58, 1999
-
ABNT
SOTOMAYOR, Jorge e MELLO, Luis Fernando. A note on some developments on Carathéodory conjecture on umbilic points. Expositiones Mathematicae, v. 17, n. 1, p. 49-58, 1999Tradução . . Acesso em: 09 jan. 2026. -
APA
Sotomayor, J., & Mello, L. F. (1999). A note on some developments on Carathéodory conjecture on umbilic points. Expositiones Mathematicae, 17( 1), 49-58. -
NLM
Sotomayor J, Mello LF. A note on some developments on Carathéodory conjecture on umbilic points. Expositiones Mathematicae. 1999 ; 17( 1): 49-58.[citado 2026 jan. 09 ] -
Vancouver
Sotomayor J, Mello LF. A note on some developments on Carathéodory conjecture on umbilic points. Expositiones Mathematicae. 1999 ; 17( 1): 49-58.[citado 2026 jan. 09 ] - Historical comments on Monge’s ellipsoid and the configurations of lines of curvature on surfaces
- Umbilic and tangential singularities on configurations of principal curvature lines
- Bifurcations in a class of polycycles involving two saddle-nodes on a Möbius band
- Stable piecewise polynomial vector fields
- Lines of mean curvature on surfaces immersed in R3
- Harmonic mean curvature lines on surfaces immersed in R-3
- Bifurcation analysis of a model for biological control
- Lines of principal curvature around umbilics and Whitney umbrellas
- Impasse singularities of differential systems of the form A(x)x'=F(x)
- Structural stability of constrained polynomial systems
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
