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ABSTRACT

Mainardi-Codazzi differential compatibility conditions between quadratic forms, as those appearing in sur-
face theory, are considered in an abstract setting. They are shown to be equivalent to simple integral
expressions for the derivatives of the transition maps defined on maximal and minimal principal lines by the
foliations of minimal and maximal principal ones. These integral expressions are applied to the study of
stability conditions for periodic principal lines.
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1. INTRODUCTION

Let M be an open connected set of the (u, )-plane, endowed with a pair (A, B) of smooth quadratic forms,
the first of which is positive definite. Write the following expressions for these forms.

A = Edu® + 2Fdudv + Gdv®, EG-F?>0, E>0, G>0

B = edu?® + 2fdudv + gdv?.

Define the mean, extrinsic and principal curvatures H = H(A, B), K = K(A, B)and k; = ka(A, B),
ki = ki(A, B) of the pair (A, B) by

H = (Eg+ Ge - 2Ff)/2(EG - F?), K = (eg - f*)/(EG — F?)

and
ke =H+ (H? = K)Y2, ky=H-(H?*-K)"2.

A point pin M such that B, = kA,, for some real number k = k(p), is called an umbilic point of the
pair (A, B). This holds if and only if H(p)? — K(p) = 0 and gives k = H(p). The set of umbilic points
of (A, B) will be denoted by U = U(A, B).

At each point p of M, K5 is the maximum and k; is the minimum of B, on A,-unit vectors. These
extrema are attained on the eigenspaces La(p) and Ly (p) of B), relative to A,. On M\U, the line fields
L, and L, are well defined, smooth and mutually A-orthogonal. They are called respectively the maximal
and minimal principal line fields of (A, B). Their integral curves and integral foliations on M\U are called
respectively principal lines and principal foliations of the pair (A, B), the adjective maximal or minimal is
added when necessary.
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Both principal line fields are expressed by a single quadratic differential equation W = W (A, B) = 0,
where W is the lines of curvature quadratic form:

(EG — F*)W = (Fg — Gf)dv? + (Eg — Ge)dudv + (Ef — Fe)du®.
This form vanishes identically on U; on M\U, it locally splits into the product of two non vanishing
smooth one forms W5 and W, whose kernels are L, and L.

The function k2 and &, are called respectively maximal and minimal principal curvatures of (A, B).
They are smooth on Int U and M\U.

On Int U, taking any A-orthogonal chart, and on M\U integrating the principal line fields L, and L,
(i.e. the one forms W5 and W), local doubly orthogonal parameters for (A, B) are obtained. This means
that, after renaming back the coordinates and coefficient functions, the following expressions hold:

A= Edu*+Gdv?, B = Ekydu®+ Gkodi?.

The Gauss, G(A, B), and Mainardi-Codazzi, C(A, B), equa[ions for the paj]- (A, B) adopl a particu-
larly simple form in doubly orthogonal coordinates (u, ), as follows [1, 5, 6]:
G(A, B): 4(EG)*kkz = Gu(EG)y + E,(EG), = 2EG(Guy + E,,,)
C(A,B): = (k)vE =Ey(k2—k1)/2, (k2)uG = Gu(ks —k;)/2.
Bonnet Theorem [1, 6] establishes that Gauss, G(A, B), and Mainardi-Codazzi, C(A, B), compatibility

conditions on the pair (A, B) characterize (modulo rigid motions) the immersions of M into the space whose
first and second fundamental forms are, respectively, given by A and B.

Condition G(A, B), whichis the thesis of Gauss Theorema Egregium, remarkably connects the intrinsic
(metric) and extrinsic (shape) Geometries on immersed surfaces.

In section 2, ideas developed in the study of principal foliations on immersed surfaces (2, 3], will be
pursued to derive a geometric integral interpretation for C'(A, B). This will be applied in section 3 to provide
stability conditions for periodic principal lines.

2. AN INTEGRAL CHARACTERIZATION OF C(A, B)

Consider a pair (A, B) of smooth quadratic forms on an open plane set M, as in section 1 above.
THEOREM 1. Conditions 1 and 2 (2.a and 2.b), below are equivalent.

1. The pair (A, B) satisfies Mainardi-Codazzi equations on M.
2.a. On the interior of U(A, B), the function H = H(A, B) = k;(A, B), i = 1,2, is locally constant.

2.b. Along any minimal (resp. maximal) principal arc p = pul[s, t] (resp. U = U[S, T]) on M\U, whose
extremes are s, t (resp. S, 7°), the derivative of the transition map S — T (resp. s — t) defined on the
A-arc lenght parametrized maximal (resp. minimal) principal arcs through s and ¢ (resp. S and T') by
the minimal (resp. maximal) principal foliation, is given by

In(dT/dS) = /

1[s,t]

dka/ (ks — k1) (resp. In(dt/ds) = — /Z;[ST] dky / (ks — kl)) 3

PROOF. The considerably longer full expressions, in arbitrary coordinates, for Mainardi-Codazzi condi-
tions on M can be found in [1, 5, 6]. In this paper, however, only the above ones for C'(A, B), in doubly
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orthogonal coordinates, will be used. In fact, by continuity, to verify Mainardi-Codazzi conditions on M,
it suffices to do so on the open dense set (Int U) U (M\U), where these coordinates are always available.

OnInt U, C(A, B) for k = ki(A, B), i = 1,2, gives dk identically zero. Conversely if k = k;(A, B)
is locally constant on Int U/, Mainardi-Codazzi conditions holds there.

On a smooth doubly orthogonal chart defined on [s, t] x [S, T valid locally on M\U, as in section I,
the Mainardi-Codazzi equation

(k2)uG = Gyu(kg — k1) /2
is equivalent to

d(In G'*)3/0u = [dka/ (k2 — k1))0/Ou.
Integration of d(In G'/2) on the u-arc [s,t] x {v} gives
In (G‘/Q(c,u)/cw(s. ,,)) ,

which coincides with the left hand side of the first integral expression in the conclusion. The additive form
of this expression allows its verification on coordinate doubly orthogonal patches, which can be used to
cover any principal arc.

Conversely, differentiation, with respect to ¢ at ¢ = s, of this integral gives the second Mainardi-Codazzi
condition in doubly orthogonal charts and therefore on M\U.

Similarly for the equivalence of Mainardi-Codazzi equation
—(kl)uE = Ep(ﬁ.‘-g = kl)/2

and the second integral expression in the conclusion.

3. PRINCIPAL CYCLES ON CODAZZI SURFACES

A Codazzi surface M (A, B) is an oriented smooth 2-manifold M endowed with a pair of forms (A, B)
which on each positive chart (u,r) are as those (A, B) on an open set M and verify there the Mainardi-
Codazzi C'(A, B) differential conditions. The notions, functions, line fields and foliations introduced in
section | make sense and extend in the obvious way to this global setting. Notations, are conserved, with a
change into bold characters when necessary.

A compact integral curve 7 of Ly (resp. Ly) in M (A, B)\U (A, B) is called maximal (resp. minimal)
principal cycle of M (A, B).

Call 7 the Poincaré first return map (holonomy) defined by the lines of the foliation to which -y belongs,
mapping to itself a segment of a line of the orthogonal foliation through a point p in 7.

A principal cycle is called hyperbolic if =’ # 1, at p. By choosing the orientation of , it can be
assumed that 7’ < 1, which implies asymptotic (orbital) stability for . Hyperbolicity for a principal cycle
also implies the local structural stability, around 7, of the corresponding principal foliation. This means
that under small perturbations of the form (A, B) the attracting behavior persists for the perturbed foliation.

The theory of structural stability of principal lines and umbilic points for immersed surfaces can be found
in (2, 3].

THEOREM 2. Let vy be a principal cycle of a Codazzi surface M (A, B).
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1. The cycle +y is hyperbolic if and only if any of the following expressions, which are equivalent, hold:
fdklf(kz—kl)%(), ]dkz/{kg—kl);é& de/(H2—K)”2?éU,
Y o1 ~

2. Assume that dk; (resp. dk;), restricted along a minimal (resp. maximal) principal cycle 7, does not
vanish identically. Then, there is a smooth deformation (A, B,) such that, for small ¢, the Codazzi
surface M (A, By) has -y as a minimal (resp. maximal) hyperbolic principal cycle.

PROOF. Part 1 follows from direct integration, using Theorem 1.

To prove 2, asume that the cycle is minimal and take a doubly orthogonal chart (u, ) on the square
[—2, 2], on which 7 is given by v = 0 where 0k; /0u > 0.

For a non-negative smooth bump function b which is equal to 1 on [—1, 1] and vanishes outside [—2, 2],
define
k‘;)t - A’IQ = tb(ﬂ)b(l})akl /E)u, k“ = kl-

By Theorem 1, the pair (A¢, B;) with
Ay = Edu® + Gydv®, B, = Ejkydu® + Gikgydy?
satisfies the Mainardi-Codazzi conditions provided

E,=E, Gyu,v)=G(-2,v)exp (/[

—-2,u)

e (h ~ )) |
The proof of the hyperbolicity follows from part 1, since, for ¢ small,
/dku/(kzg = kl) = / dkl/(kg — k]) +t (f b(u)(8k1/8u)2/(k2 —_ kl)) -+ O(t2) 7£ 0.
o 4 § " |

The case where -y is a maximal cycle is similar, using the other Mainardi-Codazzi equation.

REMARK. In a similar way, by means of small local deformation on the Codazzi pair, it can be shown
that the property of a principal curvature to be identically constant along principal lines can be avoided.
Therefore, the hypothesis of Theorem 2, part 2, is verified generically.

For the case of surfaces immersed in space, Theorem 2 was first proved in [2]. The presentation in [3],

which uses Mainardi-Codazzi equations, suggests already that it is a result of Codazzi (and not Euclidean)
Geometry, since it is independent of Gauss condition.

Theorem 1 also gives the following orbital (non-assymptotic) stability result for principal cycles on
Codazzi surfaces.

THEOREM 3. A principal cycle of a Codazzi surface M (A, B) with constant mean curvature H = H(A, B)
is contained in the interior of an annulus of principal cycles.

PROOF. Consider a minimal principal cycle 4, it is enough to verify that its return map 7 on an arc P of
maximal principal curvature through p in 7 is the identity. Rewriting the first integral expression in Theorem
1, taking into account that 2H = ks + k; is constant and that s and ¢ = 7(s) are points on P whose A-arc
lenght coordinates (with origin at p) are S and 7', obtain

2In(dT/dS) = f dks/ (ks — H) = In[(ksy — H)(T)/ (ks — H)(S)].

ulsit]
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This amounts to
dT/(ky — H)"/*(T) = dS/(ky — H)"/*(S).

In other words, the return map 7 on P preserves the 1-form
dS/(ke — H)Y%(S).

Integration of this form in P, with origin at p, gives S = 7(S5).
This proof is inspired in that given in [4] for the case of immersed surfaces with constant mean curvature.

Following the methods of [7], the same conclusion can be obtained for Codazzi surfaces with more
general Weingarten conditions.

Other independet developments on the geometry of Codazzi surfaces can be found in [5].
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