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Geometric mean curvature lines
. . 3
on surfaces immersed in R°®)
RoNALDO GARcIA () AND JORGE SOTOMAYOR (@
RESUME. — Dans ce travail on étudie les paires de feuilletages trans-

verses avec singularités, définis dans la région elliptique d’une surface
orientée plongée dans I’espace R3. Les feuilles sont les lignes de courbure
géométrique moyenne, selon lesquelles la courbure normale est donnée par
la moyenne géométrique v/k1k2 des courbures principales ki, k2. Les sin-
gularités sont les points ombilics ( od k1 = k2) et les courbes paraboliques
(Oﬁ k1 k2 =0 )

On détermine les conditions pour la stabilité structurelle des feuilletages
autour des points ombilics, des courbes paraboliques et des cycles de cour-
bure géométrique moyenne (qui sont les feuilles compactes). La généricité
de ces conditions est établie.

Munis de ces conditions on établit les conditions suffisantes, qui sont aussi
vraisemblablement nécessaires, pour la stabilité structurelle des feuille-
tages. Ce travail est une continuation et une généralisation naturelles de
ceux sur les lignes & courbure arithmétique moyenne, selon lesquelles la
courbure normale est donnée par (k1 + k2)/2 et sur les lignes & courbure
nulle, qui sont les courbes asymptotiques. Voir les articles [6], [7], [9].

ABSTRACT. — Here are studied pairs of transversal foliations with sin-
gularities, defined on the Elliptic region (where the Gaussian curvature K
is positive) of an oriented surface immersed in R3. The leaves of the folia-
tions are the lines of geometric mean curvature, along which the normal
curvature is given by v/, which is the geometric mean curvature of the
principal curvatures ki, k2 of the immersion.

The singularities of the foliations are the umbilic points and parabolic
curves, where k1 = k2 and K = 0, respectively.
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Here are determined the structurally stable patterns of geometric mean
curvature lines near the umbilic points, parabolic curves and geometric
mean curvature cycles, the periodic leaves of the foliations. The generi-
city of these patterns is established.

This provides the three essential local ingredients to establish sufficient
conditions, likely to be also necessary, for Geometric Mean Curvature
Structural Stability. This study, outlined at the end of the paper, is a
natural analog and complement for the Arithmetic Mean Curvature and
Asymptotic Structural Stability of immersed surfaces studied previously
by the authors [6], [7], [9].

1. Introduction

In this paper are studied the geometric mean curvature configurations
associated to immersions of oriented surfaces into R3. They consist on the
umbilic points and parabolic curves, as singularities, and of the lines of geo-
metric mean curvature of the immersions, as the leaves of the two transversal
foliations in the configurations. Along these lines the normal curvature is
given by the geometric mean curvature, which is the square root of the
product of the principal curvatures (i.e of the Gaussian Curvature).

The two transversal foliations, called here geometric mean curvature fo-
liations, are well defined and regular only on the non-umbilic part of the
elliptic region of the immersion, where the Gaussian Curvature is positive.
In fact, there they are the solution of smooth quadratic differential equa-
tions. The set where the Gaussian Curvature vanishes, the parabolic set, is
generically a regular curve which is the border of the elliptic region. The
umbilic points are those at which the principal curvatures coincide, gener-
ically are isolated and disjoint from the parabolic curve. See section 2 for
precise definitions.

This study is a natural development and extension of previous results
about the Arithmetic Mean Curvature and Asymptotic Configurations, deal-
ing with the qualitative properties of the lines along which the normal curva-
ture is the arithmetic mean of the principal curvatures (i.e. is the standard
Mean Curvature) or is null. This has been considered previously by the
authors; see [6], [9] and [7].

The point of departure of this line of research, however, can be found in
the classical works of Euler, Monge, Dupin and Darboux, concerned with
the lines of principal curvature and umbilic points of immersions. See [22],
[24] for an initiation on the basic facts on this subject; see [12], [14] for a
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discussion of the classical contributions and for their analysis from the point
of view of structural stability of differential equations [16].

This paper establishes sufficient conditions, likely to be also necessary,
for the structural stability of geometric mean curvature configurations under
small perturbations of the immersion. See section 7 for precise statements.

This extends to the geometric mean curvature setting the main theorems
on structural stability for the arithmetic mean curvature configuration and
for the asymptotic configurations, proved in [6], [7], [9].

Three local ingredients are essential for this extension: the umbilic points,
endowed with their geometric mean curvature separatrix structure, the ge-
ometric mean curvature cycles, with the calculation of the derivative of the
Poincaré return map, through which is expressed the hyperbolicity condition
and the parabolic curve, together with the parabolic tangential singularities
and associated separatrix structure.

The conclusions of this paper, on the elliptic region, are complemen-
tary to results valid independently on the hyperbolic region (on which the
Gaussian curvature is negative), where the separatrix structure near the
parabolic curve and the asymptotic structural stability has been studied in

[6], [9]-

The parallel with the conditions for principal, arithmetic mean curvature
and asymptotic structural stability is remarkable. This can be attributed to
the unifying role played by the notion of Structural Stability of Differen-
tial Equations and Dynamical Systems, coming to Geometry through the
seminal work of Andronov and Pontrjagin [1] and Peixoto [20].

The interest on lines of geometric mean curvature goes back to the paper
of Occhipinti [17]. The work of Ogura [18] regards these lines in terms of his
unifying notions T-Systems and K-Systems and makes a local analysis of the
expressions of the fundamental quadratic forms in a chart whose coordinate
curves are lines of geometric mean curvature. A comparative study of these
expressions with those corresponding to other lines of geometric interest,
such as the principal, asymptotic, arithmetic mean curvature and charac-
teristic lines, was carried out by Ogura in the context of T-Systems and
K-Systems. In [8] the authors have studied the foliations by characteristic
lines, called harmonic mean curvature lines.

The authors are grateful to Prof. Erhard Heil for calling their attention
to these papers, which seem to have remained unquoted along so many
years.
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No global examples, or even local ones around singularities, of geometric
mean curvature configurations seem to have been considered in the literature
on differential equations of classic differential geometry, in contrast with the
situations for the principal and asymptotic cases mentioned above. See also
the work of Anosov, for the global structure of the geodesic flow [2], and
that of Banchoff, Gaffney and McCrory [3] for the parabolic and asymptotic
lines.

This paper is organized as follows:

Section 2 is devoted to the general study of the differential equations and
general properties of Geometric Mean Curvature Lines. Here are given the
precise definitions of the Geometric Mean Curvature Configuration and of
the two transversal Geometric Mean Curvature Foliations with singularities
into which it splits. The definition of Geometric Mean Curvature Structural
Stability focusing the preservation of the qualitative properties of the foli-
ations and the configuration under small perturbations of the immersion,
will be given at the end of this section.

In Section 3 the equation of lines of geometric mean curvature is writ-
ten in a Monge chart. The condition for umbilic geometric mean curvature
stability is explicitly stated in terms of the coeflicients of the third order jet
of the function which represents the immersion in a Monge chart. The lo-
cal geometric mean curvature separatrix configurations at stable umbilics is
established for C* immersions and resemble the three Darbouxian patterns
of principal and arithmetic mean curvature configurations [5], [12].

In Section 4 the derivative of first return Poincaré map along a geometric
mean curvature cycle is established. It consists of an integral expression
involving the curvature functions along the cycle.

In Section 5 are studied the foliations by lines of geometric mean cur-
vature near the parabolic set of an immersion, assumed to be a regular
curve. Only two generic patterns of the three singular tangential patterns
in common with the asymptotic configurations, the folded node and the
folded saddle, exist generically in the case; the folded focus being absent.
See [6].

Section 6 presents examples of Geometric Mean Curvature Configura-
tions on the Torus of revolution and the quadratic Ellipsoid, presenting
non-trivial recurrences. This situation, impossible in principal configura-
tions, has been established for arithmetic mean curvature configurations in

[7]-
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In Section 7 the results presented in Sections 3, 4 and 5 are put together
to provide sufficient conditions for Geometric Mean Curvature Structural
Stability. The genericity of these conditions is formulated at the end of this
section, however its rather technical proof will be postponed to another

paper.
2. Differential equation of geometric mean curvature lines

Let @ : M? — R% be a C", r > 4, immersion of an oriented smooth
surface M? into R3. This means that Da is injective at every point in MZ2.

The space R? is oriented by a once for all fixed orientation and endowed
with the Euclidean inner product <, >.

Let N be a vector field orthonormal to .. Assume that (u, v) is a positive
chart of M2 and that {au, 0, N} is a positive frame in R3.

In the chart (u,v), the first fundamental form of an immersion « is given
by:
I, =< Da, Do >= Edu? + 2Fdudv + Gdv?, with

E=<oy,a, > F=<ay,a, > G=<a,,a, >
The second fundamental form is given by:
II, =< N, D%a >= edu® + 2fdudv + gdv>.
The normal curvature at a point p in a tangent direction ¢ = [du : dv] is
given by:

kn =kn(p) = %Z%%)'-

The lines of geometric mean curvature of o are regular curves 4 on
M? having normal curvature equal to the geometric mean curvature of the
immersion, i.e., k, = VK, where K = K, is the Gaussian curvature of a.

Therefore the pertinent differential equation for these lines is given by:

edu? + 2 fdudv + gdv? eg—f* _ Jr

Edu? 4+ 2Fdudv + Gdv?2 ~ \ EG — F2

Or equivalently by
l9 — VKG]dv? + 2[f — VKF)dudv + [e — VKE]du? = 0. (1)
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This equation is defined only on the closure of the Elliptic region, EM?,,
of o, where K > 0. It is bivalued and C"~2, r > 4, smooth on the com-
plement of the umbilic, I,, and parabolic, P,, sets of the immersion a. In
fact, on U, , where the principal curvatures coincide, the equation vanishes
identically; on P,, it is univalued.

Also, the above equation is equivalent to the quartic differential equation,
obtained from the above one by eliminating the square root.

Agodu® + Ag1duldv + Asodu?dv® + Argdudv® + Agadv* =0 2

where,
Ay = e*(EG — F?) — E?(eg — f?)
Az = 4ef(EG — F?) — 4EF(eg — f?)
Az =6f2EG — 6egF?
Ai3=4fg(EG — F?) — 4FG(eg - f?)
Aoy = g*(EG — F?) - G*(eg - f?)

The developments above allow us to organize the lines of geometric mean
curvature of immersions into the geometric mean curvature configuration,
as follows:

Through every point p € EM?,\(U, U P,), pass two geometric mean
curvature lines of . Under the orientability hypothesis imposed on M, the
geometric mean curvature lines define two foliations: G4 1, called the min-
imal geometric mean curvature foliation, along which the geodesic torsion
is negative (ie 7, = —VEKV2H - 2VK ), and G, 2, called the mazimal

geometric mean curvature foliations, along which the geodesic torsion is

positive (i.e 7, = VKV 2H — 2VK ).

By comparison with the arithmetic mean curvature directions, making
angle /4 with the minimal principal directions, the geometric ones are
located between them and the principal ones, making an angle 6 such that

tanf ==x4/ %, as follows from Euler’s Formula. The particular expression

for the geodesic torsion given above results from the expression 7, = (k2 —
k1)sinfcosf [24]. It is found in the work of Occhipinti [17]. See also Lemma
1 in Section 4 below.

The quadruple G, = {Po,Un;Ga,1, Ga 2} is called the geometric mean
curvature configuration of a. It splits into two foliations with singularities:
Gé = {Pa,ua’Ga,i}y = 1,2°
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Let M? be also compact. Denote by M™*(M?) be the space of C" im-
mersions of M? into the Euclidean space R3, endowed with the C* topology.

An immersion « is said C*-local geometric mean curvature structurally
stable at a compact set K C M? if for any sequence of immersions o,
converging to o in M™°(M?), in a compact neighborhood Vi of K, there
is a sequence of compact subsets K,, and a sequence of homeomorphisms
mapping K to K,, converging to the identity of M?, such that on Vi it
maps umbilic, parabolic curves and arcs of the geometric mean curvature
foliations G ; to those of G, ; for i =1, 2.

An immersion « is said C*-geometric mean curvature structurally stable
if the compact K above is the closure of EM?,.

Analogously, « is said ¢- C*-geometric mean curvature structurally stable
if only the preservation of elements of i-th, i=1,2 foliation with singularities
is required.

A general study of the structural stability of quadratic differential equa-
tions (not necessarily derived from normal curvature properties) has been
carried out by Guifiez [11]. See also the work of Bruce and Fidal [4] for the
analysis of umbilics for general quadratic differential equations.

3. Geometric mean curvature lines near umbilic points

Let 0 be an umbilic point of a C", r > 4, immersion o parametrized in
a Monge chart (z,y) by a(z,y) = (z,y, h(z,y)), where

k a b c
h(z,y) = 5(962 + %) + g:c3 + §wy2 + 63/3 + O(4) (3)

This reduced form is obtained by means of a rotation of the z, y-axes.
See [12], [14].

According to Darboux [5], [12], the differential equation of principal
curvature lines is given by:

—[by + P]dy® + [(b — a)z + cy + Ppldady + [by + Psldz® =0,  (4)
Here the P; = P;(x,y) are functions of the form P;(z,y) = O(z? + y?).

As an starting point, recall the behavior of principal lines near Darboux-
ian umbilics in the following proposition.

PROPOSITION 1 [12], [14] — Assume the notation established in 3. Sup-
pose that the transversality condition T : b(b — a) # 0 holds and consider
the following situations:
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D, ) Ap >0

a
D,) Ap<0and3>1

D3) %<1

Here Ap = 4b(a — 2b)® — c?(a — 2b)?

Then each principal foliation has in a neighborhood of 0, one hyperbolic
sector in the D; case, one parabolic and one hyperbolic sector in Do case
and three hyperbolic sectors in the case Ds. These points are called principal
curvature Darbouzian umbilics.

PROPOSITION 2.— Assume the notation established in 3. Suppose that
the transversality condition Ty : kb(b — a) # 0 holds and consider the fol-
lowing situations:

Gl) Ag>0
G2) Ag<0and %>1

Gg) %<1

Here Ag = 4c*(2a — b)? — [3¢% + (a — 5b)?][3(a — 5b)(a — b) + ¢2].

Then each geometric mean curvature foliation has in a neighborhood
of 0, one hyperbolic sector in the Gy case, one parabolic and one hyperbolic
sector in Go case and three hyperbolic sectors in the case Gz. These umbilic
points are called geometric mean curvature Darbouzian umbilics.

The geometric mean curvature foliations G, ; near an umbilic point of
type Gi has a local behavior as shown in Figure 1. The separatrices of these
singularities are called umbilic separatrices.

= K

Gh G2 Gs

Figure 1. — Geometric mean curvature lines near the umbilic points G;
and their separatrices.
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Proof.— Near 0 the functions v/K and H have the following Taylor
expansions. Assume here that £ > 0, which can be achieved by means of an
exchange in orientation. So it follows that,

1 1 1 1
VK =k+ 5@+t ey +01(2), H=k+z(a+b+zey+0a(2).

Therefore the differential equation of the geometric mean curvature lines
[9 — VKG|dv? + 2[f — VKF|dudv + [e — VKE]du? = 0
is given by:
[(b—a)z + cy+ Mi]dy® + [4by + Ma)dzdy — [(b— a)x + cy + Ms]dz? = 0 (5)
where M;, i = 1,2, 3, represent functions of order O((z? + 3?)).

At the level of first jet the differential equation 5 is the same as that of
the arithmetic mean curvature lines given by

[9 — HG]dv? + 2[f — HF)dudv + [e — HE]du?* = 0.

The condition Ag coincides with the Ag condition established to char-
acterizes the arithmetic mean curvature Darbouxian umbilics studied in
detail in [7] reducing the analysis of that of hyperbolic saddles and nodes
whose phase portrait is determined only by the first jet. a

Remark 1.— In the plane b = 1 the bifurcation diagram of the umbilic
points of types G; for the geometric mean curvature configuration and of
types D, for the principal configuration is as shown in Figure 2 below.

D3 D;

Figure 2. — Bifurcation diagram of points D; and G;.
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THEOREM 1.— An immersion a € M™*(M?), r > 4, is C3—local geo-
metric mean curvature structurally stable at Uy, if and only if every p € U,
is one of the types Gi, k = 1,2,3 of proposition 2.

Proof. — Clearly proposition 2 shows that the conditions G;, ¢ =1,2,3
and Ty : kb(b — a) # 0 included imply the C3—local geometric mean cur-
vature structural stability. This involves the construction of the homeomor-
phism (by means of canonical regions) mapping simultaneously minimal
and maximal geometric mean curvature lines around the umbilic points of
o onto those of a C* slightly perturbed immersion.

We will discuss the necessity of the condition Ty : k(b — a)b # 0 and of
the conditions G;, ¢ = 1, 2, 3. The first one follows from its identification
with a transversality condition that guarantees the persistent isolatedness of
the umbilic points of o and its separation from the parabolic set, as well as
the persistent regularity of the Lie-Cartan surface G. Failure of T condition
has the following implications:

a) b(b — a) = 0; in this case the elimination or splitting of the umbilic
point can be achieved by small perturbations.

b) k = 0 and b(b — a) # 0; in this case a small perturbation separates
the umbilic point from the parabolic set.

The necessity of G; follows from its dynamic identification with the hy-
perbolicity of the equilibria along the projective line of the vector field G.
Failure of this condition would make possible to change the number of geo-
metric mean curvature umbilic separatrices at the umbilic point by means
a small perturbation of the immersion. O

4. Periodic geometric mean curvature lines

Let o : M2 — R3 be an immersion of a compact and oriented surface
and consider the foliations G, ;, ¢ = 1, 2, given by the geometric mean
curvature lines.

In terms of geometric invariants, here is established an integral expres-
sion for the first derivative of the return map of a periodic geometric mean
curvature line, called geometric mean curvature cycle. Recall that the return
map associated to a cycle is a local diffeomorphism with a fixed point, de-
fined on a cross section normal to the cycle by following the integral curves
through this section until they meet again the section. This map is called
holonomy in Foliation Theory and Poincaré Map in Dynamical Systems,
[16].
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A geometric mean curvature cycle is called hyperbolic if the first deriva-
tive of the return map at the fixed point is different from one.

The geometric mean curvature foliations G,; has no geometric mean
curvature cycles such that the return map reverses the orientation. Initially,
the integral expression for the derivative of the return map is obtained in
class C%; see Lemma 2 and Proposition 3. Later on, in Remark 3 it is shown
how to extend it to class C3.

The characterization of hyperbolicity of geometric mean curvature cycles
in terms of local structural stability is given in Theorem 2 of this section.

LEMMA 1.— Let ¢ : I — M2 be a geometric mean curvature line
parametrized by arc length. Then the Darbouz frame is given by:

T'=kyN AT + VKN
NATY = —k,T+1,N
9 9
N'= VKT -1,NAT

where Ty = £V 2H — 2VKVK. The sign of T4 is positive (resp. negative) if

¢ is mazimal (resp. minimal) geometric mean curvature line.

Proof.— The normal curvature k, of the curve c is by the definition the
geometric mean curvature vK. From the Euler equation k, = k; cos? 6 +

ko sin® 6 = VK, get tanf = +4/ Xi—‘\}% Therefore, by direct calculation, the

geodesic torsion is given by 7, = (k — k1) sinfcosf = +v/2H — 2VKVK.
O

Remark 2.— The expression for the geodesic curvature k, will not be
needed explicitly in this work. However, it can be given in terms of the
principal curvatures and their derivatives using a formula due to Liouville
[24].

LEMMA 2.— Let a: M — R3 be an immersion of class C™, r > 6, and
c be a mean curvature cycle of o, parametrized by arc length s and of length
L. Then the expression,

als,v) = os) +v(N AT)(s)+ [ L) = Ks) e Aés)v3+v3B(s, V)N (s)

where B(s,0) = 0, defines a local chart (s,v) of class C™ =5 in a neighborhood
of c.
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Proof.— The curve c is of class C"~! and the map a(s,v,w) = c(s) +
v(N A T)(s) + wN(s) is of class C""2 and is a local diffeomorphism in
a neighborhood of the axis s. In fact [os, @y, ](s,0,0) = 1. Therefore
there is a function W(s,v) of class C"~2 such that a(s,v, W(s,v)) is a
parametrization of a tubular neighborhood of aoc. Now for each s, W (s, v)
is just a parametrization of the curve of intersection between a(M) and the
normal plane generated by {(N AT)(s), N(s)}. This curve of intersection is
tangent to (N A T)(s) at v = 0 and notice that k,(N A T)(s) = 2H(s) —

VK(s). Therefore,
(s, v, W(s,v)) = c(s) + v(N AT)(s)

(6)
+[2H(s)_2 KGe) 2 4 ﬂﬁﬂv?’ + v3B(s,v)|N(s),

where A is of class C"™5 and B(s,0)=0. O

We now compute the coefficients of the first and second fundamental
forms in the chart (s,v) constructed above, to be used in proposition 3.

N(s,v) = 222 = [-7y(s)v + O(2)|T(s)

lasAo,| —

—[(2H(s) — 24/K(s))v + O2)|(N AT)(s) + [1 + O(2)]N(s).

Therefore it follows that £ =< a5, a5 >, F =< 05,0 >, G =< @y, 0y >,
e=< N,ass >, f=<N,as, > and g =< N,q,, > are given by

E(s,v) =1—2kg(s)v+ h.ot

F(s,v) =0+ 0.v+ h.ot

G(s,v) =1+ 0.v + h.o.t

e(s,v) = /K(s) + v[74(s) — 2kg(s)H(s)] + h.o.t

£(5,0) = 74(8) + {12H(5) = VR + kg (s)7y(5)}v + o
a(s,v) = 2H(s) — \/K(s) + A(s)v + h.o.t

PROPOSITION 3.— Leta : M — R3 be an immersion of class C™, r > 6
and ¢ be a mazimal (resp. minimal) geometric mean curvature cycle of a,
parametrized by arc length s and of total length L. Then the derivative of
the Poincaré map . associated to c is given by:

Inm!,(0) = /0 [\/_]v

Here 1y = VKA 2H - 2VK K (resp. g = —{’/E\/2H——2\/—I€).

- 388 —
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Proof.— The Poincaré map associated to ¢ is the map 7, : ¥ — ¥
defined in a transversal section to ¢ such that 7, (p) = p for p € cN T and
7o (q) is the first return of the geometric mean curvature line through g to the
section X, choosing a positive orientation for c. It is a local diffeomorphism
and is defined, in the local chart (s,v) introduced in Lemma 2, by =, :
{s =0} — {s = L}, ma(vo) = v(L,vp), where v(s,vg) is the solution of the
Cauchy problem

(9 — VKG)dv? + 2(f — VKF)dsdv + (e — VKE)ds* =0, v(0,vp) = vo.

Direct calculation gives that the derivative of the Poincaré map satisfies
the following linear differential equation:

d dv N, dv, [e—VKE],

dv
@\ dug) dvg

dvo

(=)

=% Go) = T2 = vKF]
Therefore, using equation 7 it results that

le-VKEL _ 75 _ VKl _k

Integrating the equation above along an arc [sg, s1] of geometric mean
curvature line, it follows that:

v ()T [
= .

Kly k&
WK, + Z(H - \/E)] ds.  (8)
21 Ty
Applying 8 along the geometric mean curvature cycle of length L, obtain
dv L1IVK Kk
EQ)_OIU":O = e:z:p[/0 {W + ;g—('H - VK)| ds.

From the equation KX = (eg — f2)/(EG — F?) evaluated at v = 0 it
follows that K = vK[2H — VK] — 2. Solving this equation it follows that

7y = VKV 2H — 2V/K. This ends the proof. O

Remark 3.— At this point we show how to extend the expression for
the derivative of the hyperbolicity of geometric mean curvature cycles es-
tablished for class C® to class C? (in fact we need only class C?).

The expression 8 is the derivative of the transition map for a geometric
mean curvature foliation (which at this point is only of class C!), along an
arc of geometric mean curvature line. In fact, this follows by approximating
the C® immersion by one of class C®. The corresponding transition map
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(now of class C*) whose derivative is given by expression 8 converges to
the original one (in class C') whose expression must given by the same
integral, since the functions involved there are the uniform limits of the
corresponding ones for the approximating immersion.

Remark 4.— The expression for the derivative of the Poincaré map is
obtained by the integration of a one form along the geometric mean curva-
ture line 7. In the case of the arithmetic mean curvature cycles the corre-

. . . . . . _ 1 rL H
spondent expression for the derivative is given by: In7'(0) = 3 fo \/ﬁds.
This was proved in [7].

PROPOSITION 4.— Let o : M — R? be an immersion of class C™, r >

6, and c be a mazimal geometric mean curvature cycle of o, parametrized
by arc length and of length L. Consider a chart (s,v) as in lemma 2 and
consider the deformation

B(5,9) = Ble, 5,0) = als,v) + e 212 3]5( )N (s)
where 0 = 1 in neighborhood of v = 0, with small support and A;(s) =
T4(s) > 0.

Then c is a geometric mean curvature cycle of 3. for all € small and c
is a hyperbolic geometric mean curvature cycle for B¢, € # 0.

Proof. — In the chart (s,v), for the immersion S, it is obtained that:
E(s,v) =1 —2ky4(s)v+ h.o.t
F(s,v) =04 0.v+ h.o.t
G(s,v) =140+ h.o.t
e(s,v) = \/K(s) + v[r)(s) — 2kg(s)H(s) )] + h.o.t
f(s,v) = 14(s) + [2H(s) — M]’v+hot
9(s,v) = 2H(s) — /K (s) + v[A(s) + €A1 (s)] + h.o.t

In the expressions above E =< s, 8, >, F =< 3, 3, >, G =< By, By >,
e =< Bss, N >, f =< N,Bsy >, g =< N,Bpp >and N = 3, /\/Bv/
| Bs A B | -

Therefore c is a maximal geometric mean curvature cycle for all 3. and
at v = 0 it follows from equation K = (eg — f2)/(EG — F?) that

Ky = 6\/’EA1(S) + f(kgv Tg» \/’E’ H)(S)

-390 -



Geometric mean curvature lines on surfaces immersed in R3

Therefore, assuming A;(s) = 74(s) > 0, it results that,

Edg(lnﬂ"(o))k:o =- /OL % ((\[K—:)v> ds = —%L < 0. O

27,

As a synthesis of propositions 3 and 4, the following theorem is obtained.

THEOREM 2. — An immersion a € M™*(M2), r > 6, is C®—local geo-
metric mean curvature structurally stable at a geometric mean curvature

cycle c if only if,
/ [[‘/—]” g(H \/_)] ds #0.
0

271

Proof.— Using propositions 3 and 4, the local topological character of
the foliation can be changed by small perturbation of the immersion, when
the cycle is not hyperbolic. O

5. Geometric mean curvature lines near the parabolic line

Let 0 be a parabolic point of a C", r > 6, immersion o parametrized in
a Monge chart (z,y) by a(z,y) = (z,y, h(z,y)), where

h(z,y) = £ + &2° + Sxy? + Sa?y + &
2,2 3 E 4 (9)
+532' + ¢ 2%y + ey’ + 53yt + 0(5)
The coefficients of the first and second fundamental forms are given by:
E(z,y) =1+ 0(4)
F(z,y) = dkzy® + %% + 0(4)

G(z,y) = 1 + k?y? + 2kbxy? + kecy® + 0(4)

e(z,y) = az + dy + $2° + Bry + S47 — Ldk?y® + O(4)

fl@y) = dz+ by + §2* + Cay + §y® — Jdk?ey? — Jbk%y° + O(4)

9(z,y) =k + bz +cy+ $a® + Dy + L(E - k3)y?

— 1k%dz?y — Sbk%zy? + dk2zy?® + (3 - o)k?y® +0(4)
(10)
The Gaussian curvature is given by
K(z,y) =k(az + dy) + 2(Ak + 2ab — 2d?)z? + (Bk + ac — bd)zy (1)
+1(Ck + 2¢cd — 26?)y? + O(3).
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The coefficients of the quartic differential equation 2 are given by
Ago = —k(az + dy) + 1(2a® + 2d* — 2ab — Ak)z?
+(2ad — Bk + bd — ac)zy + 3(2b% + 2d* — 2cd — Ck)y?
+3(6dB — 3Ab)z3 + $(2dA + 3dC — Ac)z?y
+3(4dB + 3Cb — 2Bc)zy?
+3(12dk® + 6dC + 6bD — 3cC — 3dE)y® + O(4)

A3z; = 4adz? + 4(ab + d*)zy + 4bdy® + 2Adx?
+(6dB + 2A4b)z%y + (4bB + 6dC)zy? + 2(dD + bC)y® + O(4)

Agy = 6d%z? + 12bdxy + 6b%y” + (3AD + 6dB)z®
+6(BD + bB + 4dC)z%y + (4dD + 3CD + 12bC)zy? + 6bDy> + O(4)

Ayz = 4k(dz + by) + (2Bk + 4bd)z® + 4(Ck + cd + b*)zy + (2kD + 4bc)y?
+(6BD + 2bB + 2dC)z® + (12CD + 2Bc + 6Cb)z?y
+(6D? + 4cC + 2dE + 2bD — 4dk3)zy? + (2bE + 2¢D — 4bk3)y® + O(4)

Aos =k + k(2b — @)z + k(2c — d)y + 3[—2ab + 2b? + (2C — A)k + 2d%]z?
+[(2D — B)k + ¢(2b — a) + bdjzy + [¢* + 3(2E — C)k — k* — cd + b?]y?
+2(18CD + 6dB — 3Ab + 6Cb)z® + 1(3dC — Ac + 2¢C)a’y
+1(2bE + 6DE — 6Dk® — 2bk® — 2Bc + 3Cb)zy?
+2(6cE — 6¢ck® — 3cC — 3dE + 6bD)y® + O(4) )

12

LEMMA 3.— Let 0 be a parabolic point and consider the parametrization
(x,y, h(z,y)) as above. If k > 0 and a® + d* # O then the set of parabolic
points is locally a regular curve normal to the vector (a,d) at 0.

If a # 0 the parabolic curve is transversal to the minimal principal di-
rection (1,0).

If a = 0 then the parabolic curve is tangent to the principal direction
giwen by (1,0) and has quadratic contact with the corresponding minimal
principal curvature line if dk(Ak — 3d®) # 0.

Proof.— If a # 0, from the expression of K given by equation 11 it
follows that the parabolic line is given by z = —%y 4+ 01(2) and so is
transversal to the principal direction (1,0) at (0,0).

-392 -



Geometric mean curvature lines on surfaces immersed in R3

If a = 0, from the expression of K given by equation 11 it follows that
the parabolic line is given by y = 2d Ak x2 4+ 02(3) and that y = -——kx +
O3(3) is the principal line tangent to the pr1n01pal direction (1,0). Now

the condition of quadratic contact 2d Ak # —== is equivalent to dk(Ak —

3d)#0. O

PROPOSITION 5.— Let 0 be a parabolic point and the Monge chart
(z,y) as above.

If a # O then the mean geometric curvature lines are transversal to the
parabolic curve and the mean curvatures lines are shown in the picture below,
the cuspidal case.

Ifa =0 and 0 = dk(Ak — 3d?) # O then the mean geometric curva-
ture lines are shown in the picture below. In fact, if o > O then the mean
geometric curvature lines are folded saddles. Otherwise, if o < 0 then the
mean geometric curvature lines are folded nodes. The two separatrices of
these tangential singularities, folded saddle and folded node, as illustrate in
the Figure 3 below, are called parabolic separatrices.

Figure 3. — Geometric mean curvature lines near a parabolic point

(cuspidal, folded saddle and folded node) and their separatrices.

Proof. — Consider the quartic differential equation
H(z,y,p) = Aoap® + A13p® + Anop® + Az1p+ Ago = 0

where p = [dz : dy] and the Lie-Cartan line field of class C"~3 defined by

' = H,
y/ = pHp
p = ’_(Ha: +pHy), b= %

where A;; are given by equation 12.

If a # O the vector Y is regular and therefore the mean geometric curva-
ture lines are transversal to the parabolic line and at parabolic points these
lines are tangent to the principal direction (1, 0).
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If a = 0, direct calculation gives H(0) =0, H,(0) =0, H,(0) = —kd,
H,(0)=0.

Therefore, solving the equation H(z,y(z,p),p) = 0 near 0 it follows, by
the Implicit Function Theorem, that:
2d? — Ak , 2Abdk — BAk® —2d%b ,
T R SRR z°+ 0(4).

y=y(z,p) =

Therefore the vector field Y given by the differential equation below

.'I,‘/ = Hp(m7 y(xa p),p)
p'= —(H; +pHy)(z,y(z,p), p)

is given by

o' = 4223 4 12d%2%p + 12dkap® + 4k%p® + O(4)
p' = (Ak — 2d?)z + dkp + O(2).

The singular point 0 is isolated and the eigenvalues of the linear part of
Y are given by A; = 0 and A2 = dk. The correspondent eigenvectors are
given by f1 = (1, (2d? — Ak)/dk) and f2 = (0,1).

Performing the calculations, restricting Y to the center manifold W¢ of
class C7=3, ToW*® = fi, it follows that

_ Ak — 382
e

It follows that O is a topological saddle or node of cubic type provided
o(Ak — 3d?*)kd # 0. If o > 0 then the mean geometric curvature lines
are folded saddles and if o < 0 then the mean geometric curvature lines
are folded nodes. In the case o > 0, the center manifold W€ is unique,
[23], cap. V, page 319, and so the saddle separatrices are well defined. See
Figure 4 below.

Y, = 3 4+ 0(4)

Figure 4. — Phase portrait of the vector field Y near singularities.
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The reader may find a more complete study of this structure, which can
be expressed in the context of normal hyperbolicity, in the paper of Palis
and Takens [19].

Notice that due to the constrains of the problem treated here, the non
hyperbolic saddles and nodes, which in the standard theory would bifurcate
into three singularities, are actually structurally stable (do not bifurcate).

For a deep analysis of the lost of the hyperbolicity condition and the
consequent bifurcations, the reader is addressed to the book of Roussarie
[21]. O

THEOREM 3.— An immersion o € M™*(M?), r > 6, is C®—local ge-
ometric mean curvature structurally stable at a tangential parabolic point p
if only if, the condition o # 0 in proposition 5 holds.

Proof. — Direct from Lemma 3 and proposition 5, the local topologi-
cal character of the foliation can be changed by small perturbation of the
immersion when o = 0. 0O

6. Examples of geometric mean curvature configurations

As mentioned in the Introduction, no examples of geometric mean curva-
ture foliations are given in the literature, in contrast with the principal and
asymptotic foliation. In this section are studied the geometric mean curva-
ture configurations in two classical surfaces: The Torus and the Ellipsoid.
In contrast with the principal case [22], [24] (but in concordance with the
arithmetic mean curvature one [7]) non-trivial recurrence can occur here.

PROPOSITION 6.— Consider a torus of revolution T(r, R) obtained by
rotating a circle of radius r around a line in the same plane and at a distance
R, R > r, from its center. Define the function

.3 3 ds
)= 2(§)4 - - T
-z Vcoss(l+ fcoss)d

Then the geometric mean curvature lines on T'(r, R), defined in the elliptic
region are all closed or all recurrent according to p € Q or p € R\ Q.
Furthermore, both cases occur for appropriate (r, R).

— (7'

Proof.— The torus of revolution T'(r, R) is parametrized by
o(s,0) = ((R+rcoss)cosf, (R + rcoss)sinf, rsins).

Direct calculation shows that E =%, F =0, G =[R+rcoss]?, e= —r,
f=0and g= —coss(R+rcoss). Clearly (s,0) is a principal chart.
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The differential equation of the geometric mean curvature lines, in the
principal chart (s,0), is given by VeEds? — \/gGd#? = 0. This is equiva-
lent to

(f)z _ \/coss(R+ 7 cos s)3
e’ r3
Solving the equation above it follows that,

6, F
r.3 [2 ds
dé = (E)‘ 4 r 3"
6o —z v/coss(1+ £ coss)d
So the two Poincaré maps, 7+ : {s = =%} — {s = 7}, defined by 7+ (6) =

o = 2mp( %) have rotation number equal to +p(%). Direct calculations gives
that p(0) > 0 and p’(0) < 0. Therefore, both the rational and irrational cases
occur. This ends the proof. O

PROPOSITION 7.— Consider an ellipsoid E,p . with three azes a >
b > c > 0. Then Eyp . have four umbilic points located in the plane of
symmetry orthogonal to middle axis; they are of the type G1 for geometric
mean curvature lines and of type D1 for the principal curvature lines.

Proof. — This follows from proposition 2 and the fact that the arithmetic

mean curvature lines have this configuration, as established in [7]. O
PROPOSITION 8.— Consider an ellipsoid Eqp . with three azes a >
b>c> 0. On the ellipse ¥ C E, 4., containing the four umbilic points, p;,
i=1,---,4, counterclockwise oriented, denote by S (resp. S2) the distance
between the adjacent umbilic points p1 and ps (resp. p1 and p2). Define
s
p=%.

Then if p € R\ Q (resp. p € Q) all the geometric mean curvature lines
are recurrent (resp. all, with the exception of the geometric mean curvature
umbilic separatrices, are closed). See Figure 5 below.

J P

Figure 5. — Upper view of geometric mean curvature lines on the ellipsoid.
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Proof. — The ellipsoid E, 3 . belongs to the triple orthogonal system of
2
surfaces defined by the one parameter family of quadrics, ;er_); + 3% +
+)\ =1 with a > b > ¢ > 0, see also [24] and [22].

c

The following parametrization of E, 3 c.

Mva)  [M@ob) Mo

a(u,v) = (+ W(a,b,c)" "\ W(b,a,c)’ " \| W(c,a, b))

where,

M(u,v,w) = w?(u+ w?)(v + w?) and W (a, b, c) = (a® —b?)(a® — c?), define
the ellipsoidal coordinates (u,v) on Eqp ., where u € (—b%,—c?) and v €
(—a?, —b?).

The first fundamental form of E, 3 . is given by:

_ 1(u—v)u 1(v—up
I =ds? = Edu® + Gdv® = 1 h()d2 1 h()d2

The second fundamental form is given by

abe(u — ) 2, abe(v — u) v,

4/u h(u) 4+/uvh(v)

where h(z) = (z+a?)(z+b%)(z+c?). The four umbilic points are (+zg, 0, ()

2_p2 [c2—p2
= (:!:a —y——gz pps ,0, +c fg—_? .

II = edu? + gdv? =

The differential equation of the geometric mean curvature lines is given

by:
(@)2 _ g —_ _Ez-:ﬁ
du gG —m";;'

Define do; = M—ﬁ;du and dos = 3/— e )dv By integration, this
leads to the chart (01, 02), in which the differential equation of the geometric
mean curvature lines is given by

do? — do? = 0.

On the ellipse ¥ = {(=,0, z)]% + %; = 1} the distance between the
umblllc points p1 = (20,0,20) and py (20,0, —20) is given by S; =
f—b2 dv and that between the umbilic points p; = (z,0,2¢) and

p2 = (“3?0,0, 20) is given by S5 = '_:2 vh_<:>
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It is obvious that the ellipse ¥ is the union of four umbilic points
and the four principal umbilical separatrices for the principal foliations. So
S\{p1,p2,p3,p4} is a transversal section of both geometric mean curvature
foliations. The differential equation of the geometric mean curvature lines in
the principal chart (u,v) is given by veEdu? —/gGdv? = 0, which is equiv-
alent to (vVeEdu)? = (/gGdv)?, which amounts to do; = +doy. Therefore
near the umbilic point p; the geometric mean curvature lines with a geo-
metric mean curvature umbilic separatrix contained in the region {y > 0}
define a the transition map o4 : ¥ — ¥ which is an isometry, reversing the
orientation, with o4 (p;) = p;. This follows because in the principal chart
(u,v) this map is defined by oy : {u = —b?} — {v = —b?} which satisfies
the differential equation Z—‘;—f = —1. By analytic continuation it results that
o+ is an orientation reversing isometry, with two fixed points {p1, ps}. The
geometric reflection o_, defined in the region y < 0 have the two umbilics
{p2, pa} as fixed points.

So on the ellipse parametrized by arclength defined by o;, the Poincaré
return map m; : ¥ — X ( composition of two isometries o and o_) is a
rotation with rotation number given by %

Analogously for the other geometric mean curvature foliation, with the
Poincaré return map given by m = 74 o 7—, where 74 and 7_ are two
isometries having respectively {p2,ps} and {p1,ps} as fixed points. O

7. Geometric mean curvature structural stability

In this section the results of sections 3, 4 and 5 are put together to
provide sufficient conditions for geometric mean curvature stability, outlined
below.

THEOREM 4.— The set of immersions G;(M?),i = 1, 2 which satisfy
conditions i), ... , v) below are i-C*®-mean curvature structurally stable and
Gi,i=1, 2 is open in M™*(M?), r > s > 6.

i) The parabolic curve is reqular : K = 0 implies dK # 0 and the tan-
gential singularities are saddles and nodes.
1) The umbilic points are of type G;, i =1, 2, 3.
1) The geometric mean curvature cycles of G ; are hyperbolic.

i) The geometric mean curvature foliations Go,; has no separatriz con-
nections. This means that there is no geometric mean curvature line
joing two umbilic or tangential parabolic singularities and being sep-
aratrices at both ends. See propositions 2 and 5.
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v) The limit set of every leaf of G4 ; is a parabolic point, umbilic point
or a geometric mean curvature cycle.

Proof.— The openness of G;(M?) follows from the local structure of the
geometric mean curvature lines near the umbilic points G;, i = 1, 2, 3, near
the geometric mean curvature cycles and by the absence of umbilic geometric
mean curvature separatrix connections and the absence of recurrences. The
equivalence can be performed by the method of canonical regions and their
continuation as was done in [12], [14] for principal lines, and in [9], for
asymptotic lines. O

Notice that Theorem 4 can be reformulated so as to give the mean
geometric stability of the configuration rather than that of the separate
foliations. To this end it is necessary to consider the folded extended lines,
that is to consider the line of one foliation that arrive at the parabolic set at
a given transversal point as continuing through the line of the other foliation
leaving the parabolic set at this point, in a sort of “billiard”. This gives raise
to the extended folded cycles and separatrices that must be preserved by
the homeomorphism mapping simultaneously the two foliations.

Therefore the third, fourth and fifth hypotheses above should be modi-
fied as follows:

iii’) the extended folded periodic cycles should be hyperbolic,
iv’) the extended folded separatrices should be disjoint,

v’) the limit set of extended lines should be umbilic points, parabolic
singularities and extended folded cycles.

The class of immersions which verify the extended five conditions i), ii), iii’),
iv’), v’) of a compact and oriented manifold M? will be denoted by G(M?).

This procedure has been adopted by the authors in the case of asymp-
totic lines by the suspension operation in order to pass from the foliations
to the configuration and properly formulate the stability results. See [9].

Remark 5.— In the space of convex immersions M7%(S?) ( K, > 0),
the sets G(S?) and G;(S?) N G2(S?) coincide.

The genericity result involving the five conditions above is formulated
now.

THEOREM 5.— The sets G;, i = 1, 2 are dense in M™2?(M?), r > 6.
In the space M72(S?) the set G(S?) is dense.
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The main ingredients for the proof of this theorem are the Lifting and
Stabilization Lemmas, essential for the achievement of condition five. The
conceptual background for this approach goes back to the works of Peixoto
and Pugh.

The elimination of non-trivial recurrences — the so called “Closing Lemma
Problem”- as a step to achieve condition v) is by far the most difficult of the
steps in the proof. See the book of Palis and Melo, [16], for a presentation
of these ideas in the case of vector fields on surfaces.

The proof of theorem above will be postponed to a forthcoming paper
[10]. It involves technical details that are closer to the proofs of genericity
theorems given by Gutierrez and Sotomayor, [13], [14], for principal curva-
ture lines and by Garcia and Sotomayor, [7], for arithmetic mean curvature
lines.
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