Noisy self-training with data augmentations for offensive and hate speech detection tasks (2023)
- Authors:
- Autor USP: SILVA, DIEGO FURTADO - ICMC
- Unidade: ICMC
- Subjects: PROCESSAMENTO DE LINGUAGEM NATURAL; APRENDIZADO COMPUTACIONAL; PORTUGUÊS DO BRASIL; ÓDIO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- ISSN: 2603-2813
- Conference titles: International Conference on Recent Advances in Natural Language Processing - RANLP
-
ABNT
LEITE, João A e SCARTON, Carolina Evaristo e SILVA, Diego Furtado. Noisy self-training with data augmentations for offensive and hate speech detection tasks. 2023, Anais.. Shoumen: INCOMA, 2023. Disponível em: http://ranlp.org/ranlp2023/index.php/proceedings/. Acesso em: 10 fev. 2026. -
APA
Leite, J. A., Scarton, C. E., & Silva, D. F. (2023). Noisy self-training with data augmentations for offensive and hate speech detection tasks. In Proceedings. Shoumen: INCOMA. Recuperado de http://ranlp.org/ranlp2023/index.php/proceedings/ -
NLM
Leite JA, Scarton CE, Silva DF. Noisy self-training with data augmentations for offensive and hate speech detection tasks [Internet]. Proceedings. 2023 ;[citado 2026 fev. 10 ] Available from: http://ranlp.org/ranlp2023/index.php/proceedings/ -
Vancouver
Leite JA, Scarton CE, Silva DF. Noisy self-training with data augmentations for offensive and hate speech detection tasks [Internet]. Proceedings. 2023 ;[citado 2026 fev. 10 ] Available from: http://ranlp.org/ranlp2023/index.php/proceedings/ - Large scale similarity-based time series mining
- A divergence-based pruning approach for tree selection in continuous data streams
- Enhancing random forest for continuous data streams using divergence measures to select decision trees
- Classificação de séries temporais por similaridade e extração de atributos com aplicação na identificação automática de insetos
- Unsupervised feature based algorithms for time series extrinsic regression
- Evaluating sentiment quantification methods in brazilian portuguese corpora
- Proceedings of 21st National Meeting on Artificial and Computational Intelligence
- Match: a maximum-likelihood approach for classification under label shift
- A new time series framework for forest fire risk forecasting and classification
- Large-scale similarity-based time series mining
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3153947.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
