Large-scale similarity-based time series mining (2018)
- Authors:
- USP affiliated authors: BATISTA, GUSTAVO ENRIQUE DE ALMEIDA PRADO ALVES - ICMC ; SILVA, DIEGO FURTADO - ICMC
- Unidade: ICMC
- Subjects: MINERAÇÃO DE DADOS; ANÁLISE DE SÉRIES TEMPORAIS; ALGORITMOS ÚTEIS E ESPECÍFICOS
- Language: Inglês
- Imprenta:
- Publisher: SBC
- Publisher place: Porto Alegre
- Date published: 2018
- Source:
- Título: Anais
- Conference titles: Congresso da Sociedade Brasileira de Computação - CSBC
-
ABNT
SILVA, Diego Furtado. Large-scale similarity-based time series mining. 2018, Anais.. Porto Alegre: SBC, 2018. Disponível em: https://sol.sbc.org.br/index.php/ctd/article/view/3656/3608. Acesso em: 10 fev. 2026. -
APA
Silva, D. F. (2018). Large-scale similarity-based time series mining. In Anais. Porto Alegre: SBC. Recuperado de https://sol.sbc.org.br/index.php/ctd/article/view/3656/3608 -
NLM
Silva DF. Large-scale similarity-based time series mining [Internet]. Anais. 2018 ;[citado 2026 fev. 10 ] Available from: https://sol.sbc.org.br/index.php/ctd/article/view/3656/3608 -
Vancouver
Silva DF. Large-scale similarity-based time series mining [Internet]. Anais. 2018 ;[citado 2026 fev. 10 ] Available from: https://sol.sbc.org.br/index.php/ctd/article/view/3656/3608 - Large scale similarity-based time series mining
- A divergence-based pruning approach for tree selection in continuous data streams
- Enhancing random forest for continuous data streams using divergence measures to select decision trees
- Classificação de séries temporais por similaridade e extração de atributos com aplicação na identificação automática de insetos
- Unsupervised feature based algorithms for time series extrinsic regression
- Noisy self-training with data augmentations for offensive and hate speech detection tasks
- Evaluating sentiment quantification methods in brazilian portuguese corpora
- Proceedings of 21st National Meeting on Artificial and Computational Intelligence
- Match: a maximum-likelihood approach for classification under label shift
- A new time series framework for forest fire risk forecasting and classification
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
