A new time series framework for forest fire risk forecasting and classification (2023)
- Authors:
- Autor USP: SILVA, DIEGO FURTADO - ICMC
- Unidade: ICMC
- DOI: 10.1109/IJCNN54540.2023.10191502
- Subjects: APRENDIZADO COMPUTACIONAL; PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS); FRAMEWORKS; INCÊNDIOS FLORESTAIS
- Keywords: forest fire risk; supervised machine learning; classification; time series forecasting
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2023
- Source:
- Título: Proceedings
- Conference titles: International Joint Conference on Neural Networks - IJCNN
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SANTOS, Bruna Zamith et al. A new time series framework for forest fire risk forecasting and classification. 2023, Anais.. Piscataway: IEEE, 2023. Disponível em: https://doi.org/10.1109/IJCNN54540.2023.10191502. Acesso em: 09 fev. 2026. -
APA
Santos, B. Z., Soriano, B. M. A., Narciso, M. G., Silva, D. F., & Cerri, R. (2023). A new time series framework for forest fire risk forecasting and classification. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN54540.2023.10191502 -
NLM
Santos BZ, Soriano BMA, Narciso MG, Silva DF, Cerri R. A new time series framework for forest fire risk forecasting and classification [Internet]. Proceedings. 2023 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1109/IJCNN54540.2023.10191502 -
Vancouver
Santos BZ, Soriano BMA, Narciso MG, Silva DF, Cerri R. A new time series framework for forest fire risk forecasting and classification [Internet]. Proceedings. 2023 ;[citado 2026 fev. 09 ] Available from: https://doi.org/10.1109/IJCNN54540.2023.10191502 - Large scale similarity-based time series mining
- A divergence-based pruning approach for tree selection in continuous data streams
- Enhancing random forest for continuous data streams using divergence measures to select decision trees
- Classificação de séries temporais por similaridade e extração de atributos com aplicação na identificação automática de insetos
- Unsupervised feature based algorithms for time series extrinsic regression
- Noisy self-training with data augmentations for offensive and hate speech detection tasks
- Evaluating sentiment quantification methods in brazilian portuguese corpora
- Proceedings of 21st National Meeting on Artificial and Computational Intelligence
- Match: a maximum-likelihood approach for classification under label shift
- Large-scale similarity-based time series mining
Informações sobre o DOI: 10.1109/IJCNN54540.2023.10191502 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3150790.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
