Lebesgue solvability of elliptic homogenous linear equations on measures (2020)
- Authors:
- Autor USP: PICON, TIAGO HENRIQUE - FFCLRP
- Unidade: FFCLRP
- Subjects: EQUAÇÕES LINEARES; OPERADORES ELÍTICOS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: UFPB/CCEN
- Publisher place: João Pessoa
- Date published: 2020
- Source:
- Título: Resumo
- Conference titles: Congresso Brasileiro de Jovens Pesquisadores em Matemática Pura, Aplicada e Estatística (CBJME)
-
ABNT
PICON, Tiago Henrique e BILIATTO, Victor Sandrin. Lebesgue solvability of elliptic homogenous linear equations on measures. 2020, Anais.. João Pessoa: UFPB/CCEN, 2020. Disponível em: https://repositorio.usp.br/directbitstream/f2938943-fba1-4ea3-8f65-e8d55c9ed02f/003152649.pdf. Acesso em: 02 abr. 2025. -
APA
Picon, T. H., & Biliatto, V. S. (2020). Lebesgue solvability of elliptic homogenous linear equations on measures. In Resumo. João Pessoa: UFPB/CCEN. Recuperado de https://repositorio.usp.br/directbitstream/f2938943-fba1-4ea3-8f65-e8d55c9ed02f/003152649.pdf -
NLM
Picon TH, Biliatto VS. Lebesgue solvability of elliptic homogenous linear equations on measures [Internet]. Resumo. 2020 ;[citado 2025 abr. 02 ] Available from: https://repositorio.usp.br/directbitstream/f2938943-fba1-4ea3-8f65-e8d55c9ed02f/003152649.pdf -
Vancouver
Picon TH, Biliatto VS. Lebesgue solvability of elliptic homogenous linear equations on measures [Internet]. Resumo. 2020 ;[citado 2025 abr. 02 ] Available from: https://repositorio.usp.br/directbitstream/f2938943-fba1-4ea3-8f65-e8d55c9ed02f/003152649.pdf - Pseudodifferential operators, Rellich-Kondrachov theorem and Sobolev-Hardy spaces
- Div–curl type estimates for elliptic systems of complex vector fields
- Local Hardy-Sobolev inequalities for canceling elliptic differential operators
- Stein-Weiss inequality in L 1 norm for vector fields
- Sobolev solvability of elliptic homogenous linear equations on Borel measures
- A note on lebesgue solvability of elliptic homogeneous linear equations with measure data
- Stein-Weiss type inequality in L1 norm for vector fields and applications
- Continuous solutions for divergence-type equations associated to elliptic systems of complex vector fields
- On local continuous solvability of equations associated to elliptic and canceling linear differential operators
- The boundedness of inhomogeneous Calderón–Zygmund operators on local Hardy spaces and approximate moment conditions
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
003152649.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas