Exportar registro bibliográfico


Metrics:

Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic (2020)

  • Authors:
  • USP affiliated authors: CAMPO, VANESSA LEIRIA - FCFRP ; BARUFFI, MARCELO DIAS - FCFRP ; RODRIGUES, LILIAN CATALDI - FCFRP ; LÉO, THAÍS CANASSA DE - FCFRP ; MARCHIORI, MARCELO FIORI - FCFRP ; FUZO, CARLOS ALESSANDRO - FCFRP
  • Unidade: FCFRP
  • DOI: 10.1007/s10719-019-09893-z
  • Subjects: ANTICORPOS MONOCLONAIS; IMUNOLOGIA; GLICOPROTEÍNAS; SÍNTESE QUÍMICA; DISTROFIA MUSCULAR
  • Keywords: Antibodies; Glycopeptide; Mucins; Phage display, molecular Modelling; α-Dystroglycan
  • Agências de fomento:
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1007/s10719-019-09893-z (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo NÃO é de acesso aberto
    • Cor do Acesso Aberto: closed

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      LÉO, Thais Canassa De; DIAS-BARUFFI, Marcelo; CAMPO, Vanessa Leiria; et al. Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic. Glycoconjugate Journal, New York, v. 37, n. 1, p. 77-93, 2020. Disponível em: < https://doi.org/10.1007/s10719-019-09893-z > DOI: 10.1007/s10719-019-09893-z.
    • APA

      Léo, T. C. D., Dias-Baruffi, M., Campo, V. L., Rodrigues, L. C., Marchiori, M. F., Fuzo, C. A., et al. (2020). Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic. Glycoconjugate Journal, 37( 1), 77-93. doi:10.1007/s10719-019-09893-z
    • NLM

      Léo TCD, Dias-Baruffi M, Campo VL, Rodrigues LC, Marchiori MF, Fuzo CA, Brigido MM, Sandomenico A, Ruvo M, Maranhão AQ. Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic [Internet]. Glycoconjugate Journal. 2020 ; 37( 1): 77-93.Available from: https://doi.org/10.1007/s10719-019-09893-z
    • Vancouver

      Léo TCD, Dias-Baruffi M, Campo VL, Rodrigues LC, Marchiori MF, Fuzo CA, Brigido MM, Sandomenico A, Ruvo M, Maranhão AQ. Multifaceted antibodies development against synthetic α-dystroglycan mucin glycopeptide as promising tools for dystroglycanopathies diagnostic [Internet]. Glycoconjugate Journal. 2020 ; 37( 1): 77-93.Available from: https://doi.org/10.1007/s10719-019-09893-z

    Referências citadas na obra
    Moore, C.J., Hewitt, J.E.: Dystroglycan glycosylation and muscular dystrophy. Glycoconj. J. 26, 349–357 (2009). https://doi.org/10.1007/s10719-008-9182-0
    Sciandra, F., Gawlik, K.I., Brancaccio, A., Durbeej, M.: Dystroglycan: a possible mediator for reducing congenital muscular dystrophy? Trends Biotechnol. 25, 262–268 (2007). https://doi.org/10.1016/j.tibtech.2007.04.002
    Muntoni, F., Brockington, M., Godfrey, C., Ackroyd, M., Robb, S., Manzur, A., Kinali, M., Mercuri, E., Kaluarachchi, M., Feng, L., Jimenez-Mallebrera, C., Clement, E., Torelli, S., Sewry, C.A., Brown, S.C.: Muscular dystrophies due to defective glycosylation of dystroglycan. Acta Myol. 26, 129–135 (2007)
    Martin-Rendon, E., Blake, D.J.: Protein glycosylation in disease: new insights into the congenital muscular dystrophies. Trends Pharmacol. Sci. 24, 178–183 (2003). https://doi.org/10.1016/S0165-6147(03)00050-6
    Mendell, J.R., Boué, D.R., Martin, P.T.: The congenital muscular dystrophies: recent advances and molecular insights. Pediatr. Dev. Pathol. 9, 427–443 (2006). https://doi.org/10.2350/06-07-0127.1.The
    Sparks, S.E., Quijano-Roy, S., Harper, A., Rutkowski, A., Gordon, E., Hoffman, E.P., Pegoraro, E.: Congenital muscular dystrophy overview. In: Pagon, R.A. (ed.) GeneReviews. University of Washington, Seattle (1993)
    Yoshida-Moriguchi, T., Campbell, K.P.: Matriglycan: a novel polysaccharide that links dystroglycan to the basement membrane. Glycobiology. 25, 702–713 (2015). https://doi.org/10.1093/glycob/cwv021
    Baressi, R., Campbell, K.P.: Dystroglycan: from biosynthesis to pathogenesis of human disease. J. Cell Sci. 119, 199–207 (2006). https://doi.org/10.1242/jcs.02814
    Martin, P.T.: Dystroglycan glycosylation and its role in matrix binding in skeletal muscle. Glycobiology. 13, 55R–66R (2003). https://doi.org/10.1093/glycob/cwg076
    Breloy, I., Schwientek, T., Gries, B., Razawi, H., Macht, M., Albers, C., Hanisch, F.G.: Initiation of mammalian O-mannosylation in vivo is independent of a consensus sequence and controlled by peptide regions within and upstream of the α-dystroglycan mucin domain. J. Biol. Chem. 283, 18832–18840 (2008). https://doi.org/10.1074/jbc.M802834200
    Nilsson, J., Nilsson, J., Larson, G., Grahn, A.: Characterization of site-specific O-glycan structures within the mucin-like domain of α-dystroglycan from human skeletal muscle. Glycobiology. 20, 1160–1169 (2010). https://doi.org/10.1093/glycob/cwq082
    Voglmeir, J., Kaloo, S., Laurent, N., Meloni, M.M., Bohlmann, L., Wilson, I.B.H., Flitsch, S.L.: Biochemical correlation of activity of the alpha-dystroglycan-modifying glycosyltransferase POMGnT1 with mutations in muscle-eye-brain disease. Biochem. J. 436, 447–455 (2011). https://doi.org/10.1042/BJ20101059
    Brockington, M., Torelli, S., Sharp, P.S., Liu, K., Cirak, S., Brown, S.C., Wells, D.J., Muntoni, F.: Transgenic overexpression of LARGE induces α-dystroglycan hyperglycosylation in skeletal and cardiac muscle. PLoS One. 5, (2010). https://doi.org/10.1371/journal.pone.0014434
    Vester-Christensen, M.B., Halim, A., Joshi, H.J., Steentoft, C., Bennett, E.P., Levery, S.B., Vakhrushev, S.Y., Clausen, H.: Mining the O-mannose glycoproteome reveals cadherins as major O-mannosylated glycoproteins. PNAS. 110, 21018–21023 (2013). https://doi.org/10.1073/pnas.1313446110
    Bartels, M.F., Winterhalter, P.R., Yu, J., Liu, Y., Lommel, M., Möhrlen, F., Hu, H., Feizi, T., Westerlind, U., Ruppert, T., Strahl, S.: Protein O-mannosylation in the murine brain: occurrence of mono-O-Mannosyl glycans and identification of new substrates. PLoS One. 11, (2016). https://doi.org/10.1371/journal.pone.0166119
    Chai, W., Yuen, C.T., Kogelberg, H., Carruthers, R.A., Margolis, R.U., Feizi, T., Lawson, A.M.: High prevalence of 2-mono- and 2,6-di-substituted manol-terminating sequences among O-glycans released from brain glycopeptides by reductive alkaline hydrolysis. Eur. J. Biochem. 263, 879–888 (1999). https://doi.org/10.1046/j.1432-1327.1999.00572.x
    Bouchet-Séraphin, C., Vuillaumier-Barrot, S., Seta, N.: Dystroglycanopathies: about numerous genes involved in glycosylation of one single glycoprotein. J. Neuromuscul. Dis. 2, 27–38 (2015). https://doi.org/10.3233/JND-140047
    Bönnemann, C.G., Wang, C.H., Quijano-Roy, S., Deconinck, N., Bertini, E., Ferreiro, A., Muntoni, F., Sewry, C., Béroud, C., Mathews, K.D., Moore, S.A., Bellini, J., Rutkowski, A., North, K.N.: Diagnostic approach to the congenital muscular dystrophies. Neuromuscul. Disord. 24, 289–311 (2014). https://doi.org/10.1016/j.nmd.2013.12.011
    Varon, D., Lioy, E., Patarroyo, M., Schratt, X., Unverzagt, C.: Synthesis of Mannosyl and Oligomannosyl Threonine Building Blocks. Aust. J. Chem. 55, 161–165 (2002). doi:Unsp 0004–9425/02/010161\nhttps://doi.org/10.1071/ch01204
    Chan, W.C., White, P.D.: Fmoc Solid Phase Peptide Synthesis: a Practical Approach. Oxford University Press, New York (1999)
    Campo, V.L., Riul, T.B., Carvalho, I., Baruffi, M.D.: Antibodies against mucin-based glycopeptides affect trypanosoma cruzi cell invasion and tumor cell viability. ChemBioChem. 15, 1495–1507 (2014). https://doi.org/10.1002/cbic.201400069
    Marchiori, M.F., Iossi, G.P., Bortot, L.O., Dias-Baruffi, M., Campo, V.L.: Synthesis of novel triazole-derived glycopeptides as analogs of α-dystroglycan mucins. Carbohydr. Res. 472, 23–32 (2019). https://doi.org/10.1016/j.carres.2018.11.004
    Campo, V.L., Riul, T.B., Bortot, L.O., Martins-Teixeira, M.B., Marchiori, M.F., Iaccarino, E., Ruvo, M., Dias-Baruffi, M., Carvalho, I.: A synthetic MUC1 Glycopeptide bearing βGalNAc-Thr as a Tn antigen isomer induces the production of antibodies against tumor cells. ChemBioChem. 18, 527–538 (2017). https://doi.org/10.1002/cbic.201600473
    Sandomenico, A., Leonardi, A., Berisio, R., Sanguigno, L., Focà, G., Focà, A., Ruggiero, A., Doti, N., Muscariello, L., Barone, D., Farina, C., Owsianka, A., Vitagliano, L., Patel, A.H., Ruvo, M.: Generation and characterization of monoclonal antibodies against a cyclic variant of hepatitis C virus E2 epitope 412-422. J. Virol. 90, 3745–3759 (2016). https://doi.org/10.1128/JVI.02397-15.Editor
    Dantas-Barbosa, C., Brígido, M.M., Maranhão, A.Q.: Construction of a human fab phage display library from antibody repertoires of osteosarcoma patients. Genet. Mol. Res. 4, 126–140 (2005)
    Rader, C., Steinberger, P., Barbas, C.: Selection from antibody libraries. In: Barbas, C.F., Burton, D.R., Scott, J.K., Silverman, G.J. (eds.) Phage Display - a Laboratory Manual. Cold Spring Harbor Labratory Press, New York (2001)
    Huang, J.X., Bishop-Hurley, S.L., Cooper, M.A.: Development of anti-infectives using phage display: biological agents against bacteria, viruses, and parasites. Antimicrob. Agents Chemother. 56, 4569–4582 (2012). https://doi.org/10.1128/AAC.00567-12
    Barbas, C.F., Burton, D.R., Scott, J.K., Silverman, G.J.: Phage Display: a Laboratory Manual. Cold Spring Harbor, New York (2001)
    Sambrook, J., Russel, D.W.: Molecular Cloning. A Laboratory Manual, Cold Spring Harbor, New York (2001)
    Yang, J., Yan, R., Roy, A., Xu, D., Poisson, J., Zhang, Y.: The I-TASSER suite: protein structure and function prediction. Nat. Methods. 12, 7–8 (2015). https://doi.org/10.1038/nmeth.3213
    Xu, D., Zhang, Y.: Improving the physical realism and structural accuracy of protein models by a two-step atomic-level energy minimization. Biophys. J. 101, 2525–2534 (2011). https://doi.org/10.1016/j.bpj.2011.10.024
    Lovell, S.C., Davis, I.W., III, W.B.A., Bakker, P.I.W. De, Word, J.M., Prisant, M.G., Richardson, J.S., Richardson, D.C.: Structure validation by Calpha geometry: phi,psi and Cbeta deviation. Proteins Struct., Funct., Genet. 50, 437–450 (2003)
    Abraham, M.J., Murtola, T., Schulz, R., Páll, S., Smith, J.C., Hess, B., Lindah, E.: Gromacs: high performance molecular simulations through multi-level parallelism from laptops to supercomputers. SoftwareX. 1–2, 19–25 (2015). https://doi.org/10.1016/j.softx.2015.06.001
    Daura, X., Gademann, K., Jaun, B., Seebach, D., Gunsteren, W.F. Van, Mark, A.E.: Peptide Folding: When Simulation Meets Experiment. Angew. Chemie - Int. Ed. 38. 236–240 (1999)
    Trott, O., Olson, A.: AutoDock Vina: improving the speed and accuracy of docking with a new scoring function, efficient optimization and multithreading. J. Comput. Chem. 31, 455–461 (2010). https://doi.org/10.1002/jcc.21334.AutoDock
    Case, D.., Berryman, J.T., Betz, R.M., Cerutti, D.S., Cheatham III, T.E., Darden, T.A., Duke, R.E., Giese, T.J., Gohlke, H., Goetz, A.W., Homeyer, N., Izadi, S., Janowski, P., Kaus, J., Kovalenko, A., Lee, T.S., LeGrand, S., Li, P., Luchko, T., Luo, R., Madej, B., Merz, K.M., Monard, G., Needham, P., Nguyen, H., Nguyen, H.T., Omelyan, I., Onufriev, A., Roe, D.R., Roitberg, A., Salomon-Ferrer, R., Simmerling, C.L., Smith, W., Swails, J., Walker, R.C., Wang, J., Wolf, R.M., Wu, X., York, D.M., Kollman, P.A.: Amber 15, (2015)
    Kirschner, K. n., Yongye, A.B., Tschampel, S.M., Daniels, J.G.-O.C.R., Foley, B.L., Woods, R.J.: GLYCAM06: A Generalizable Biomolecular Force Field. Carbohydrates. J. Comput. Chem. 29, (2010). doi:https://doi.org/10.1002/jcc
    Schrodinger, L.: The PyMOL Molecular Graphics System, Version 1.8., (2015)
    Luo, X., Sugiura, T., Nakashima, R., Kitamura, Y., Kitade, Y.: Synthesis of oligonucleotides with glucosamine at the 3′-position and evaluation of their biological activity. Bioorganic Med. Chem. Lett. 23, 4157–4161 (2013). https://doi.org/10.1016/j.bmcl.2013.05.036
    Jensen-Jarolim, E., Neumann, C., Oberhuber, G., Gscheidlinger, R., Neuchrist, C., Reinisch, W., Zuberi, R.I., Penner, E., Liu, F.T., Boltz-Nitulescu, G.: Anti-Galectin-3 IgG autoantibodies in patients with Crohn’s disease characterized by means of phage display peptide libraries. J. Clin. Immunol. 21, 348–356 (2001). https://doi.org/10.1023/A:1012240719801
    Albrecht, H., Mirick, G., Winthrop, M.D., Denardo, S.J., Albrecht, H., Mirick, G.R., Kroger, L.A., Lamborn, K.R., Colvin, M.E.: Selection and characterization of anti-MUC-1 scFvs intended for targeted therapy. Clin. Cancer Res. 9, 3845–3853 (2003)
    Albrecht, H., Denardo, G.L., Denardo, S.J.: Development of anti-MUC1 di-scFvs for molecular targeting of epithelial cancers, such as breast and prostate cancers. Q. J. Nucl. Med. Mol. Imaging. 51, 304–313 (2007)
    Fühner, V., Heine, P.A., Helmsing, S., Goy, S., Heidepriem, J., Loeffler, F.F., Dübel, S., Gerhard, R., Hust, M.: Development of neutralizing and non-neutralizing antibodies targeting known and novel epitopes of TcdB of clostridioides difficile. Front. Microbiol. 9, (2018). https://doi.org/10.3389/fmicb.2018.02908
    Dorfmueller, S., Tan, H.C., Ngoh, Z.X., Toh, K.Y., Peh, G., Ang, H.P., Seah, X.Y., Chin, A., Choo, A., Mehta, J.S., Sun, W.: Isolation of a recombinant antibody specific for a surface marker of the corneal endothelium by phage display. Sci. Rep. 6, 1–12 (2016). https://doi.org/10.1038/srep21661
    Brinton, L.T., Bauknight, D.K., Dasa, S.S.K., Kelly, K.A.: PHASTpep: analysis software for discovery of cell-selective peptides via phage display and next-generation sequencing. PLoS One. 11, 1–22 (2016). https://doi.org/10.1371/journal.pone.0155244
    ‘T Hoen, P.A.C., Jirka, S.M.G., Ten Broeke, B.R., Schultes, E.A., Aguilera, B., Pang, K.H., Heemskerk, H., Aartsma-Rus, A., Van Ommen, G.J., Den Dunnen, J.T.: Phage display screening without repetitious selection rounds. Anal. Biochem. 421, 622–631 (2012). doi:https://doi.org/10.1016/j.ab.2011.11.005
    Ravn, U., Didelot, G., Venet, S., Ng, K.T., Gueneau, F., Rousseau, F., Calloud, S., Kosco-Vilbois, M., Fischer, N.: Deep sequencing of phage display libraries to support antibody discovery. Methods. 60, 99–110 (2013). https://doi.org/10.1016/j.ymeth.2013.03.001
    Rouet, R., Jackson, K.J.L., Langley, D.B., Christ, D.: Next-generation sequencing of antibody display repertoires. Front. Immunol. 9, 1–5 (2018). https://doi.org/10.3389/fimmu.2018.00118
    Yang, W., Yoon, A., Lee, S., Kim, S., Han, J., Chung, J.: Next-generation sequencing enables the discovery of more diverse positive clones from a phage-displayed antibody library. Exp. Mol. Med. 49, e308–e309 (2017). https://doi.org/10.1038/emm.2017.22
    Turner, K.B., Naciri, J., Liu, J.L., Anderson, G.P., Goldman, E.R., Zabetakis, D.: Next-generation sequencing of a single domain antibody repertoire reveals quality of phage display selected candidates. PLoS One. 11, 1–15 (2016). https://doi.org/10.1371/journal.pone.0149393
    Christiansen, A., Kringelum, J. V, Hansen, C.S., Bøgh, K.L., Sullivan, E., Patel, J., Rigby, N.M., Eiwegger, T., Szépfalusi, Z., Masi, F. De, Nielsen, M., Lund, O., Dufva, M.: High-throughput sequencing enhanced phage display enables the identification of patient- specific epitope motifs in serum. Sci. Rep. 5, 1–13 (2015). doi:https://doi.org/10.1038/srep12913
    Dias-Neto, E., Nunes, D.N., Giordano, R.J., Sun, J., Botz, G.H., Yang, K., Setubal, J.C., Pasqualini, R., Arap, W.: Next-generation phage display: integrating and comparing available molecular tools to enable costeffective high-throughput analysis. PLoS One. 4, (2009). https://doi.org/10.1371/journal.pone.0008338
    Kabat, E.A., Te Wu, T., Perry, H.M., Gottesman, K.S., Foeller, C.: Sequences of Proteins of Immunological Interest. National Institute of Health, Bethesda (1991)
    Ravn, U., Gueneau, F., Baerlocher, L., Osteras, M., Desmurs, M., Malinge, P., Magistrelli, G., Farinelli, L., Kosco-Vilbois, M.H., Fischer, N.: By-passing in vitro screening - next generation sequencing technologies applied to antibody display and in silico candidate selection. Nucleic Acids Res. 38, (2010). https://doi.org/10.1093/nar/gkq789
    Tsuchiya, Y., Mizuguchi, K.: The diversity of H3 loops determines the antigen-binding tendencies of antibody CDR loops. Protein Sci. 25, 815–825 (2016). https://doi.org/10.1002/pro.2874
    Xu, J.L., Davis, M.M.: Diversity in the CDR3 region of VH is sufficient for most antibody specificities. Immunity. 13, 37–45 (2000)
    Capra, J.D.: Hypervariable region of human immunoglobulin heavy chains. Nature. 230, 61–63 (1971)
    Te Wu, T., Kabat, E.A.: An analysis of the sequences of the variable regions of Bence Jones proteins and myeloma light chains and their implications for antibody complementarity. J. Exp. Med. 132, 211–250 (1970). https://doi.org/10.1084/jem.132.2.211
    Kabat, E.A.: Unique features of the variable regions of Bence Jones proteins and theis possible relation to antibody complementarity. PNAS. 59, 613–619 (1968)
    Frenzel, A., Hust, M., Schirrmann, T.: Expression of recombinant antibodies. Front. Immunol. 4, 217 (2013). https://doi.org/10.3389/fimmu.2013.00217
    Chames, P., Van Regenmortel, M., Weiss, E., Baty, D.: Therapeutic antibodies: successes, limitations and hopes for the future. Br. J. Pharmacol. 157, 220–233 (2009). https://doi.org/10.1111/j.1476-5381.2009.00190.x
    Yokota, T., Milenic, D.E., Whitlow, M., Schlom, J.: Rapid tumor penetration of a single-chain Fv and comparison with other immunoglobulin forms. Cancer Res. 52, 3402–3408 (1992)
    Zhong, N., Loppnau, P., Seitova, A., Ravichandran, M., Fenner, M., Jain, H., Bhattacharya, A., Hutchinson, A., Paduch, M., Lu, V., Olszewski, M., Kossiakoff, A.A., Dowdell, E., Koide, A., Koide, S., Huang, H., Nadeem, V., Sidhu, S.S., Greenblatt, J.F., Marcon, E., Arrowsmith, C.H., Edwards, A.M., Gräslund, S.: Optimizing production of antigens and fabs in the context of generating recombinant antibodies to human proteins. PLoS One. 10, 1–17 (2015). https://doi.org/10.1371/journal.pone.0139695
    Carter, P.J., Lazar, G.A.: Next generation antibody drugs: pursuit of the “high-hanging fruit.” Nat. Rev. Drug Discov. (2017). doi:https://doi.org/10.1038/nrd.2017.227
    Robinson, M.P., Ke, N., Lobstein, J., Peterson, C., Szkodny, A., Mansell, T.J., Tuckey, C., Riggs, P.D., Colussi, P.A., Noren, C.J., Taron, C.H., Delisa, M.P., Berkmen, M.: Efficient expression of full-length antibodies in the cytoplasm of engineered bacteria. Nat. Commun. 6, 1–9 (2015). https://doi.org/10.1038/ncomms9072
    Lobstein, J., Emrich, C.A., Jeans, C., Faulkner, M., Riggs, P., Berkmen, M.: SHuffle, a novel Escherichia coli protein expression strain capable of correctly folding disulfide bonded proteins in its cytoplasm. Microb. Cell Factories. 11, 1 (2012). https://doi.org/10.1186/1475-2859-11-56
    Gasteiger, E., Hoogland, C., Gattiker, A., Duvaud, S., Wilkins, M.R., Appel, R.D., Bairoch, A.: Protein identification and analysis tools in the ExPASy server. In: Walker, J.M. (ed.) The Proteomics Protocols Handbook. pp. 571–607. Humana Press (2005)
    Saito, F., Blank, M., Schröder, J., Manya, H., Shimizu, T., Campbell, K.P., Endo, T., Mizutani, M., Kröger, S., Matsumura, K.: Aberrant glycosylation of α-dystroglycan causes defective binding of laminin in the muscle of chicken muscular dystrophy. FEBS Lett. 579, 2359–2363 (2005). https://doi.org/10.1016/j.febslet.2005.03.033
    Humphrey, E.L., Lacey, E., Le, L.T., Feng, L., Sciandra, F., Morris, C.R., Hewitt, J.E., Holt, I., Brancaccio, A., Barresi, R., Sewry, C.A., Brown, S.C., Morris, G.E.: A new monoclonal antibody DAG-6F4 against human alpha-dystroglycan reveals reduced core protein in some, but not all, dystroglycanopathy patients. Neuromuscul. Disord. 25, 32–42 (2014). https://doi.org/10.1016/j.nmd.2014.09.005
    Berman, H.M., Westbrook, J., Feng, Z., Gilliland, G., T.N.Bhat, Weissig, H., Shindyalov, I.N., Bourne, P.E.: The protein data bank. Nucleic Acids Res. 28, 235–242 (2000). doi:https://doi.org/10.1107/S0907444902003451
    Liu, D.X., Tien, T.T.T., Bao, D.T., Linh, N.T.P., Park, H., Yeo, S.J.: A novel peptide aptamer to detect plasmodium falciparum lactate dehydrogenase. J. Biomed. Nanotechnol. 15, 204–211 (2019). https://doi.org/10.1166/jbn.2019.2667
    Shabareesh, P.R.V., Kumar, A., Salunke, D.M., Kaur, K.J.: Structural and functional studies of differentially O-glycosylated analogs of a thrombin inhibitory peptide – variegin. J. Pept. Sci. 23, 880–888 (2017). https://doi.org/10.1002/psc.3052

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2021