EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture (2021)
- Authors:
- USP affiliated authors: FRITSCHE NETO, ROBERTO - ESALQ ; COSTA NETO, GERMANO MARTINS FERREIRA - ESALQ ; GALLI, GIOVANNI - ESALQ
- Unidade: ESALQ
- DOI: 10.1093/g3journal/jkab040
- Subjects: AGRICULTURA; GENÉTICA QUANTITATIVA; GENÔMICA; INTERAÇÃO GENÓTIPO-AMBIENTE; SOFTWARES
- Keywords: Envirotipagem
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: G3: Genes | Genomes | Genetics
- ISSN: 2160-1836
- Volume/Número/Paginação/Ano: v. 11, n. 4, art. jkab040, p. 1-20, 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
COSTA-NETO, Germano et al. EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3: Genes | Genomes | Genetics, v. 11, n. 4, p. 1-20, 2021Tradução . . Disponível em: https://doi.org/10.1093/g3journal/jkab040. Acesso em: 27 dez. 2025. -
APA
Costa-Neto, G., Galli, G., Carvalho, H. F., Crossa, J., & Fritsche-Neto, R. (2021). EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture. G3: Genes | Genomes | Genetics, 11( 4), 1-20. doi:10.1093/g3journal/jkab040 -
NLM
Costa-Neto G, Galli G, Carvalho HF, Crossa J, Fritsche-Neto R. EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture [Internet]. G3: Genes | Genomes | Genetics. 2021 ; 11( 4): 1-20.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1093/g3journal/jkab040 -
Vancouver
Costa-Neto G, Galli G, Carvalho HF, Crossa J, Fritsche-Neto R. EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture [Internet]. G3: Genes | Genomes | Genetics. 2021 ; 11( 4): 1-20.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1093/g3journal/jkab040 - A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes
- Enviromics: bridging different sources of data, building one framework
- Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review
- The effect of bienniality on genomic prediction of yield in arabica coffee
- The modern plant breeding triangle: optimizing the use of genomics, phenomics, and enviromics data
- Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials
- Population-tailored mock genome enables genomic studies in species without a reference genome
- Optimization of UAS‐based high‐throughput phenotyping to estimate plant health and grain yield in sorghum
- Genomic prediction enables early but low-intensity selection in soybean segregating progenies
- CV-α: designing validations sets to increase the precision and enable multiple comparison tests in genomic prediction
Informações sobre o DOI: 10.1093/g3journal/jkab040 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
