Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review (2021)
- Authors:
- USP affiliated authors: FRITSCHE NETO, ROBERTO - ESALQ ; GALLI, GIOVANNI - ESALQ ; BORGES, KARINA LIMA REIS - ESALQ ; COSTA NETO, GERMANO MARTINS FERREIRA - ESALQ
- Unidade: ESALQ
- DOI: 10.3389/fpls.2021.658267
- Subjects: GENÔMICA; HIBRIDAÇÃO VEGETAL; MELHORAMENTO GENÉTICO VEGETAL; MILHO; SELEÇÃO GENÉTICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Frontiers in Plant Science
- ISSN: 1664-462X
- Volume/Número/Paginação/Ano: art. 658267, p. 1-16, 2021
- Este periódico é de acesso aberto
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: gold
- Licença: cc-by
-
ABNT
FRITSCHE NETO, Roberto et al. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review. Frontiers in Plant Science, p. 1-16, 2021Tradução . . Disponível em: https://doi.org/10.3389/fpls.2021.658267. Acesso em: 27 dez. 2025. -
APA
Fritsche Neto, R., Galli, G., Borges, K. L. R., Costa Neto, G. M. F., Alves, F. C., Sabadin, F., et al. (2021). Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review. Frontiers in Plant Science, 1-16. doi:10.3389/fpls.2021.658267 -
NLM
Fritsche Neto R, Galli G, Borges KLR, Costa Neto GMF, Alves FC, Sabadin F, Lyra DH, Morais PPP, Braatz de Andrade LR, Granato I, Crossa J. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review [Internet]. Frontiers in Plant Science. 2021 ; 1-16.[citado 2025 dez. 27 ] Available from: https://doi.org/10.3389/fpls.2021.658267 -
Vancouver
Fritsche Neto R, Galli G, Borges KLR, Costa Neto GMF, Alves FC, Sabadin F, Lyra DH, Morais PPP, Braatz de Andrade LR, Granato I, Crossa J. Optimizing genomic-enabled prediction in small-scale maize hHybrid breeding programs: a roadmap review [Internet]. Frontiers in Plant Science. 2021 ; 1-16.[citado 2025 dez. 27 ] Available from: https://doi.org/10.3389/fpls.2021.658267 - EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture
- A novel way to validate UAS-based high-throughput phenotyping protocols using in silico experiments for plant breeding purposes
- Enviromics: bridging different sources of data, building one framework
- Association mapping reveals genomic regions associated with bienniality and resistance to biotic stresses in arabica coffee
- The effect of bienniality on genomic prediction of yield in arabica coffee
- The modern plant breeding triangle: optimizing the use of genomics, phenomics, and enviromics data
- Nonlinear kernels, dominance, and envirotyping data increase the accuracy of genome-based prediction in multi-environment trials
- Population-tailored mock genome enables genomic studies in species without a reference genome
- Optimization of UAS‐based high‐throughput phenotyping to estimate plant health and grain yield in sorghum
- Genomic prediction enables early but low-intensity selection in soybean segregating progenies
Informações sobre o DOI: 10.3389/fpls.2021.658267 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
