Population-tailored mock genome enables genomic studies in species without a reference genome (2021)
- Authors:
- USP affiliated authors: FRITSCHE NETO, ROBERTO - ESALQ ; GALLI, GIOVANNI - ESALQ
- Unidade: ESALQ
- DOI: 10.1007/s00438-021-01831-9
- Subjects: GENOMAS; MARCADOR MOLECULAR; SEQUENCIAMENTO GENÉTICO; GENÓTIPOS; GENÔMICA
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Heidelberg
- Date published: 2021
- Source:
- Título: Molecular Genetics and Genomics
- ISSN: 1617-4615
- Volume/Número/Paginação/Ano: online, p. 1-14, 2021
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SABADIN, Felipe et al. Population-tailored mock genome enables genomic studies in species without a reference genome. Molecular Genetics and Genomics, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1007/s00438-021-01831-9. Acesso em: 27 dez. 2025. -
APA
Sabadin, F., Carvalho, H. F., Galli, G., & Fritsche Neto, R. (2021). Population-tailored mock genome enables genomic studies in species without a reference genome. Molecular Genetics and Genomics, 1-14. doi:10.1007/s00438-021-01831-9 -
NLM
Sabadin F, Carvalho HF, Galli G, Fritsche Neto R. Population-tailored mock genome enables genomic studies in species without a reference genome [Internet]. Molecular Genetics and Genomics. 2021 ; 1-14.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/s00438-021-01831-9 -
Vancouver
Sabadin F, Carvalho HF, Galli G, Fritsche Neto R. Population-tailored mock genome enables genomic studies in species without a reference genome [Internet]. Molecular Genetics and Genomics. 2021 ; 1-14.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1007/s00438-021-01831-9 - The effect of bienniality on genomic prediction of yield in arabica coffee
- Optimization of UAS‐based high‐throughput phenotyping to estimate plant health and grain yield in sorghum
- Genomic prediction enables early but low-intensity selection in soybean segregating progenies
- CV-α: designing validations sets to increase the precision and enable multiple comparison tests in genomic prediction
- Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data
- EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture
- Deep purple - an open-pollinated variety to induce haploids in tropical maize
- Impact of the complexity of genotype by environment and dominance modeling on the predictive accuracy of maize hybrids in multi-environment prediction models
- On the usefulness of parental lines GWAS for predicting low heritability traits in tropical maize hybrids
- Automated machine learning: a case study of genomic “image-based” prediction in maize hybrids
Informações sobre o DOI: 10.1007/s00438-021-01831-9 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
