Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data (2023)
- Authors:
- USP affiliated authors: FRITSCHE NETO, ROBERTO - ESALQ ; YASSUE, RAFAEL MASSAHIRO - ESALQ ; GALLI, GIOVANNI - ESALQ
- Unidade: ESALQ
- DOI: 10.1002/csc2.20836
- Subjects: ANÁLISE ESPECTRAL; BACTÉRIAS; ESTIMULANTES DE CRESCIMENTO VEGETAL; GENÔMICA; INOCULAÇÃO; MILHO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Crop Science
- ISSN: 0011-183X
- Volume/Número/Paginação/Ano: v.63, p.88-100,2023
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: hybrid
- Licença: cc-by
-
ABNT
YASSUE, Rafael Massahiro et al. Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data. Crop Science, v. 63, p. 88-100, 2023Tradução . . Disponível em: https://doi.org/10.1002/csc2.20836. Acesso em: 27 dez. 2025. -
APA
Yassue, R. M., Galli, G., Fritsche‐Neto, R., & Morota, G. (2023). Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data. Crop Science, 63, 88-100. doi:10.1002/csc2.20836 -
NLM
Yassue RM, Galli G, Fritsche‐Neto R, Morota G. Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data [Internet]. Crop Science. 2023 ;63 88-100.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1002/csc2.20836 -
Vancouver
Yassue RM, Galli G, Fritsche‐Neto R, Morota G. Classification of plant growth‐promoting bacteria inoculation status and prediction of growth‐related traits in tropical maize using hyperspectral image and genomic data [Internet]. Crop Science. 2023 ;63 88-100.[citado 2025 dez. 27 ] Available from: https://doi.org/10.1002/csc2.20836 - Automated machine learning: a case study of genomic “image-based” prediction in maize hybrids
- CV-α: designing validations sets to increase the precision and enable multiple comparison tests in genomic prediction
- The effect of bienniality on genomic prediction of yield in arabica coffee
- Quantitative trait loci related to growth and wood quality traits in Eucalyptus grandis W. Hill identified through single- and multi-trait genome-wide association studies
- Genome-wide association analysis of hyperspectral reflectance data to dissect the genetic architecture of growth-related traits in maize under plant growth-promoting bacteria inoculation
- Population-tailored mock genome enables genomic studies in species without a reference genome
- Optimization of UAS‐based high‐throughput phenotyping to estimate plant health and grain yield in sorghum
- Genomic prediction enables early but low-intensity selection in soybean segregating progenies
- EnvRtype: a software to interplay enviromics and quantitative genomics in agriculture
- Deep purple - an open-pollinated variety to induce haploids in tropical maize
Informações sobre o DOI: 10.1002/csc2.20836 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3111321-Classification of... | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
