Pay attention to evolution: time series forecasting with deep graph-evolution learning (2022)
- Authors:
- USP affiliated authors: RODRIGUES JUNIOR, JOSÉ FERNANDO - ICMC ; SOUZA, GABRIEL SPADON DE - ICMC
- Unidade: ICMC
- DOI: 10.1109/TPAMI.2021.3076155
- Subjects: PREVISÃO (ANÁLISE DE SÉRIES TEMPORAIS); APRENDIZADO COMPUTACIONAL; REDES NEURAIS; TEORIA DOS GRAFOS
- Keywords: Time Series; Graph Evolution; Representation Learning
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Los Alamitos
- Date published: 2022
- Source:
- Título: IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAM
- ISSN: 0162-8828
- Volume/Número/Paginação/Ano: v. 44, n. 9, p. 5368-5384, Sep. 2022
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SPADON, Gabriel et al. Pay attention to evolution: time series forecasting with deep graph-evolution learning. IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAM, v. 44, n. 9, p. Se 2022, 2022Tradução . . Disponível em: https://doi.org/10.1109/TPAMI.2021.3076155. Acesso em: 12 fev. 2026. -
APA
Spadon, G., Hong, S., Machado, B. B., Matwin, S., Rodrigues Junior, J. F., & Sun, J. (2022). Pay attention to evolution: time series forecasting with deep graph-evolution learning. IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAM, 44( 9), Se 2022. doi:10.1109/TPAMI.2021.3076155 -
NLM
Spadon G, Hong S, Machado BB, Matwin S, Rodrigues Junior JF, Sun J. Pay attention to evolution: time series forecasting with deep graph-evolution learning [Internet]. IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAM. 2022 ; 44( 9): Se 2022.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/TPAMI.2021.3076155 -
Vancouver
Spadon G, Hong S, Machado BB, Matwin S, Rodrigues Junior JF, Sun J. Pay attention to evolution: time series forecasting with deep graph-evolution learning [Internet]. IEEE Transactions on Pattern Analysis and Machine Intelligence - TPAM. 2022 ; 44( 9): Se 2022.[citado 2026 fev. 12 ] Available from: https://doi.org/10.1109/TPAMI.2021.3076155 - Aircraft fuselage corrosion detection using artificial intelligence
- Lig-Doctor: real-world clinical prognosis using a bi-directional neural network
- LIG-Doctor: efficient patient trajectory prediction using bidirectional minimal gated-recurrent networks
- DropLeaf: a precision farming smartphone tool for real-time quantification of pesticide application coverage
- Characterization of mobility patterns and collective behavior through the analytical processing of real-world complex networks
- From Cities to Series: Complex Networks and Deep Learning for Improved Spatial and Temporal Analytics
- Enhancing recursive graph querying on RDBMS with data clustering approaches
- A computational method for interactive design of marbling patterns
- A computational method for interactive design of marbling patterns
- Colaboração logística entre cliente e fornecedor: uma aplicação de análise visual de dados
Informações sobre o DOI: 10.1109/TPAMI.2021.3076155 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3028551.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
