Similarity of precursors in solid-state synthesis as text-mined from scientific literature (2020)
- Authors:
- Autor USP: BOTARI, TIAGO - ICMC
- Unidade: ICMC
- DOI: 10.1021/acs.chemmater.0c02553
- Subjects: MINERAÇÃO DE DADOS; RECONHECIMENTO DE TEXTO; ESTADO SÓLIDO
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Washington
- Date published: 2020
- Source:
- Título: Chemistry of Materials
- ISSN: 0897-4756
- Volume/Número/Paginação/Ano: v. 32, n. 18, p. 7861-7873, Sep. 2020
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HE, Tanjin et al. Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chemistry of Materials, v. 32, n. 18, p. Se 2020, 2020Tradução . . Disponível em: https://doi.org/10.1021/acs.chemmater.0c02553. Acesso em: 21 jan. 2026. -
APA
He, T., Sun, W., Huo, H., Kononova, O., Rong, Z., Tshitoyan, V., et al. (2020). Similarity of precursors in solid-state synthesis as text-mined from scientific literature. Chemistry of Materials, 32( 18), Se 2020. doi:10.1021/acs.chemmater.0c02553 -
NLM
He T, Sun W, Huo H, Kononova O, Rong Z, Tshitoyan V, Botari T, Ceder G. Similarity of precursors in solid-state synthesis as text-mined from scientific literature [Internet]. Chemistry of Materials. 2020 ; 32( 18): Se 2020.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1021/acs.chemmater.0c02553 -
Vancouver
He T, Sun W, Huo H, Kononova O, Rong Z, Tshitoyan V, Botari T, Ceder G. Similarity of precursors in solid-state synthesis as text-mined from scientific literature [Internet]. Chemistry of Materials. 2020 ; 32( 18): Se 2020.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1021/acs.chemmater.0c02553 - Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment
- Text-mined dataset of inorganic materials synthesis recipes
- Local interpretation methods to machine learning using the domain of the feature space
- Predicting and interpreting oxide glass properties by machine learning using large datasets
- Machine learning unveils composition-property relationships in chalcogenide glasses
- Explainable machine learning algorithms for predicting glass transition temperatures
Informações sobre o DOI: 10.1021/acs.chemmater.0c02553 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3008646.pdf | Direct link |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
