Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment (2020)
- Authors:
- Autor USP: BOTARI, TIAGO - ICMC
- Unidade: ICMC
- DOI: 10.1021/acsaem.0c00369
- Subjects: ELETROCATÁLISE; MATERIAIS NANOESTRUTURADOS; FÍSICA COMPUTACIONAL
- Keywords: Molybdenum sulphide; Electrocatalyst; Nano-flakes; Hydrogen Evolution reaction; Density Functional theory
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Washington
- Date published: 2020
- Source:
- Título: ACS Applied Energy Materials
- ISSN: 2574-0962
- Volume/Número/Paginação/Ano: v. 3, n. 6, p. 5333-5342, June 2020
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
SHARMA, Lalita et al. Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment. ACS Applied Energy Materials, v. 3, n. 6, p. 5333-5342, 2020Tradução . . Disponível em: https://doi.org/10.1021/acsaem.0c00369. Acesso em: 04 nov. 2024. -
APA
Sharma, L., Botari, T., Tiwary, C. S., & Halder, A. (2020). Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment. ACS Applied Energy Materials, 3( 6), 5333-5342. doi:10.1021/acsaem.0c00369 -
NLM
Sharma L, Botari T, Tiwary CS, Halder A. Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment [Internet]. ACS Applied Energy Materials. 2020 ; 3( 6): 5333-5342.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1021/acsaem.0c00369 -
Vancouver
Sharma L, Botari T, Tiwary CS, Halder A. Hydrogen evolution at the in-situ MoO3/MoS2 heterojunctions created by non-thermal O2 plasma treatment [Internet]. ACS Applied Energy Materials. 2020 ; 3( 6): 5333-5342.[citado 2024 nov. 04 ] Available from: https://doi.org/10.1021/acsaem.0c00369 - Similarity of precursors in solid-state synthesis as text-mined from scientific literature
- Text-mined dataset of inorganic materials synthesis recipes
- Local interpretation methods to machine learning using the domain of the feature space
- Predicting and interpreting oxide glass properties by machine learning using large datasets
- Machine learning unveils composition-property relationships in chalcogenide glasses
- Explainable machine learning algorithms for predicting glass transition temperatures
Informações sobre o DOI: 10.1021/acsaem.0c00369 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2996626.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas