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ABSTRACT: Collecting and analyzing the vast amount of
information available in the solid-state chemistry literature may
accelerate our understanding of materials synthesis. However, one
major problem is the difficulty of identifying which materials from
a synthesis paragraph are precursors or are target materials. In this
study, we developed a two-step chemical named entity recognition
model to identify precursors and targets, based on information
from the context around material entities. Using the extracted data,
we conducted a meta-analysis to study the similarities and
differences between precursors in the context of solid-state
synthesis. To quantify precursor similarity, we built a substitution model to calculate the viability of substituting one precursor
with another while retaining the target. From a hierarchical clustering of the precursors, we demonstrate that the “chemical
similarity” of precursors can be extracted from text data. Quantifying the similarity of precursors helps provide a foundation for
suggesting candidate reactants in a predictive synthesis model.

1. INTRODUCTION

Understanding how to synthesize the desired compounds is a
grand challenge in the development of novel materials.1

Researchers are trying to tackle this challenge from different
perspectives, including in situ experiments,2−4 thermodynamic
analysis,5−8 and machine learning-guided synthesis parameter
search.9,10 One potential approach is to learn from the large
volume of experimental synthesis “recipes”, which are provided
in scientific publications in various unstructured forms.11−14

Here, we define a solid-state synthesis recipe to be any
structured information about a target material, precursors, and
operations used to synthesize this material, that is classified as
solid-state synthesis by the decision tree approach of Huo et
al.15 In order to understand and eventually predict solid-state
synthesis recipes, one of the important questions is how to
select precursors. Knowledge of which precursors to use is
often achieved by an individual’s experience. Here, we present
a data-driven approach to assess the similarities and differences
between precursors in solid-state synthesis by extracting
precursors and targets from literature and conducting a
meta-analysis with the extracted data.
The extraction of precursors and targets from written text is

difficult because of the complexities of natural language. First, a
material entity can be written in text in various complicated
forms; they can be represented as chemical formulas such as
Al2O3 and AxB1−xC2−δ, chemical terms such as hafnium oxide,
acronyms such as PZT for Pb(Zr0.5Ti0.5)O3, and even more
complicated notations for composites and doped materials

such as Si3N4-30 wt% ZrB2 and Zn3Ga2Ge2−xSixO10:2.5mol%
Cr3+. Translating this knowledge into explicit rules for
chemical named entity recognition (CNER) is difficult.
Second, material entities can play different roles in synthesis

experiments such as targets, reagents, reaction media, and so
forth. While this can usually be recognized easily by researchers
based on their domain-specific knowledge and grammar
comprehension, such an implicit assignment of meaning is
much harder in computational algorithms. One naive approach
could be to use multiple rules to distinguish between targets
and precursors. For example, assign a simple material (e.g.,
TiO2) as a precursor and a complex material (e.g., Pb-
(Zr0.5Ti0.5)O3) as a target because researchers usually use
simple materials to synthesize a complex one. However, there
are many cases that do not follow this rule: the same material
zirconia can be a precursor for a Zr-based complex oxide, an
auxiliary component as a grinding media, or even a target in
the synthesis of stabilized or doped zirconia.16 In order to
correctly identify if a material plays the role of target,
precursor, or something else, one needs to read the context
of the sentence or entire paragraph, in addition to finding the
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material expressions. Hardcoding all possible rules would
require an enormous amount of human effort.
Recent progress in natural language processing (NLP)17,18

has made it possible to locate words or phrases in unstructured
text and classify them into pre-defined categories. For example,
Swain and Cole trained a conditional random field (CRF)
model on an organic dataset19 to extract chemical entities
available in the toolkit ChemDataExtractor.20 Kim et al.
utilized a neural network trained on 20 articles to extract 18
different categories of synthesis information, including
materials and targets, for 30 different oxide systems.21 Korvigo
et al. developed a CNN-RNN model to extract chemical
entities22 on the same dataset as Swain and Cole. Weston et al.
trained a bi-directional long-short term memory (Bi-LSTM)
model to extract inorganic materials from materials science
abstracts.23 Other packages to extract chemical entities using
NLP methods include OSCAR4,24 ChemicalTagger,25 GRAM-
CNN,26 and so forth. However, the previous studies mainly
focused on the identification of chemicals rather than their
roles in synthesis. Kim et al.21 demonstrate an attempt to
predict and analyze targets.
Our focus here is specifically to identify precursor and target

materials in inorganic solid-state synthesis text and to study the
relations between various precursors and correlate them with
targets. For the CNER task, a two-step model Synthesis
Materials Recognizer (SMR) based on Bi-LSTM is imple-
mented. The model recognizes context clues provided by the
words around the precursors/targets in the sentence. With the
SMR model, we extracted 1,619 unique precursors and 16,215
unique targets from 95,283 paragraphs in 86,554 scientific
papers on solid-state synthesis. This corpus of papers was
filtered from a larger set of 4 million papers as described in ref
Kononova et al.27

Quantitative analysis of this large-scale dataset indicates that
the most common precursors for each element are usually the
oxides, carbonates, or hydroxides stable at ambient environ-
ment. By applying a probabilistic model on the data we explore

which precursors play a similar role in the synthesis of a target
material and which may therefore be substitutable. Combining
the substitution probability and the distribution of synthesis
temperatures, we define a multi-feature distance metric to
characterize the similarity of precursors. A hierarchical
clustering of precursors based on this metric demonstrates
that the “chemical similarity” can be extracted from text data,
without the need to include any explicit domain knowledge.
The quantitative similarity metric offers a reference to rank
precursor candidates and constitutes an important step toward
developing a predictive synthesis model.

2. EXTRACTION OF PRECURSORS AND TARGETS

In this section, we describe the SMR model used to identify
and extract precursor and target materials from a synthesis
paragraph. By comparing with a baseline model, we explain
how the SMR model works and its advantages and limitations.

2.1. Data Preparation. We used the same data extraction
pipeline as described in ref Kononova et al.27 A total of
4,061,814 papers were scraped from main publishers including
Elsevier, Wiley, Springer, the American Chemical Society, the
Electrochemical Society, and the Royal Society of Chemistry.
After classification using the semi-supervised random forest
model from Huo et al.,15 371,850 paragraphs in the
experimental sections were found to describe inorganic
synthesis, such as solid-state, hydrothermal, sol-gel, co-
precipitation syntheses, with 95,283 of them corresponding
to solid-state synthesis. These 95,283 paragraphs and their
corresponding abstracts from 86,554 literature papers were
used for materials extraction.

2.2. Algorithm Design and Execution. The identifica-
tion of material entities in the text and their subsequent
classification as targets, precursors, or something else were
performed in two steps, as shown in Figure 1a: first, we
identified all material entities present in a sentence; next, we
replaced each material with a keyword “⟨MAT⟩” and classified
it as a “Target”, “Precursor”, or just “Material”. Each step was

Figure 1. (a) Main architecture of the SMR model. xi is the embedding used as the input for the Bi-LSTM-CRF neural network. li represents the ith
token and its left context. ri represents the ith token and its right context. ci is the combination of li and ri. ti represents the score for different tags.
(b) Change of one LSTM cell state in different context for precursor classification. The tokens in the example sentence are separated by spaces in
the hanging text and represented as the sequence numbers on the x-axis.
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executed by a different Bi-LSTM neural network with a CRF
layer on top of it (Bi-LSTM-CRF).28,29

For the first step, each input word was represented as the
combination of a word-level embedding and a character-level
embedding via an embedding layer. The word-level embed-
dings, which are vectors of real numbers representing the
words, were trained using the Word2Vec approach30,31 with
∼33,000 paragraphs on solid-state synthesis to capture the
semantic and syntactic similarity of words in synthesis text. In
this embedding layer, the characters of each word were
converted into an embedding vector using another Bi-LSTM
to learn the character-level features such as the prefix and suffix
information. The character embedding was concatenated with
the pretrained word embedding and input into a Bi-LSTM to
capture the left and right context at every word. Finally, the
output from Bi-LSTM was combined with a CRF model,
which characterized the transition probability from one tag to
another to produce the final prediction.
For the second step, a Bi-LSTM with a similar structure to

that in the first step was used but the inputs were different. All
the materials in the input sentences were replaced with the
word “⟨MAT⟩” so that the role of a material in synthesis is
predicted mainly based on the surrounding context. We found
this to be more effective than directly using the specific
materials words as the input to the Bi-LSTM because such a
direct model tries to store the mapping information from each
different material to the particular role this material is mostly
used for, which brings in bias for frequently appearing
materials. For example, as “zirconia” often describes the balls
used in ball milling, it is difficult for the neural network to
deviate from this assignment and treat “zirconia” as a target or
precursor. A more detailed discussion on the benefits of the
two-step model can be found in the Supporting Information.
Because all the chemical information about the material is lost
by inputting “⟨MAT⟩” instead of the materials words, we also
included two additional features in the word representation,
that is, the number of metal/metalloid elements and a flag
indicating whether the material contained C, H, and O
elements only. These additional features assist in the
differentiation of precursors and targets, as they tend to have
different numbers of metal/metalloid elements and are
generally not organic compounds in inorganic synthesis. The
composition information was obtained by parsing the raw text
of the material entities by regular expression comparison.27

Bi-LSTM is able to infer the role of materials from context
because Bi-LSTM specifies a variable called cell state to store
the information about the words around the material. Figure
1b shows a typical example of the trained Bi-LSTM cell state
continuously changing depending on the token context in the
example sentence32 when feeding the tokens into Bi-LSTM
one by one. In this study, 100 neurons (cells) were used to
represent the context information; Figure 1b displays one of
the cell states relevant to the context of precursors. To obtain
the cell states for the next token, both the next token and the
current cell states are input to the network. Hence, after seeing
the sequence of tokens “was prepared from” in the example
sentence, the network predicts from the context that the tokens
following this phrase most likely refer to a precursor(s).
Likewise, the network predicts that the tokens following “at
700 °C for” most likely are not precursors.
To train the SMR model, 834 solid-state synthesis

paragraphs from 750 papers were tokenized with ChemDa-
taExtractor,20 and each token was manually annotated with

tags of “Material”, “Target”, “Precursor”, and “Outside” (not a
material entity). In the annotation, a target is defined as a final
material obtained through a series of lab operations in the
complete synthesis process, and a precursor is defined as a
starting reagent involved in the synthesis process through a lab
operation and contributing to the target composition. Other
materials include media, gas, device materials, and so forth.
The annotation dataset contains 8,601 materials, out of which
1,256 are targets and 3,295 are precursors. The annotated
dataset was randomly split into training/validation/test sets
with 500/100/150 papers in each set. Early stopping33 was
used to minimize overfitting by stopping the iterative training
when the best performance was achieved on the validation set.
To reduce the variance resulting from the limited size of the
training set, the six models trained in a six-fold cross-validation
process were combined together to make the final decision by
voting in the classification. The entire training and test process
was repeated 10 times, and the average result of the test sets is
reported.

2.3. Evaluation of SMR Accuracy and Working
Examples. We first aim to demonstrate that the recognition
of context clues is necessary for the CNER task by comparing
the SMR model with a baseline model based on naive rules. To
build this baseline model, we used ChemDataExtractor20 to
identify and extract materials from the text. Then, inspired
from a scientific perspective that researchers usually use simple
materials to synthesize a complex one, the precursors and
targets were assigned based on the number of elements:
materials with only one metal/metalloid element were assumed
to be precursors and materials with at least two metal/
metalloid elements were assumed to be targets. This baseline is
a least-effort model but provides a quantitative reference for
understanding the importance of capturing context informa-
tion.
In Table 1, we compare the performance of the SMR model

and the baseline model using F1 scores, which provides a

measure of the accuracy of a binary classification test based on
the harmonic mean of the precision and recall. The F1 scores
on the extraction of all materials, precursors, and targets using
the SMR model are 95.0, 90.0, and 84.5%, respectively. Out of
all the extracted entities, 88.9% of precursors and 85.9% of
targets in the test set are correctly identified. These correct
cases account for 91.2 and 83.4% of all the precursors and
targets which should be extracted, respectively. The possibility
of errors increases when multiple precursors and targets are
present in the same sentence. Out of all the sentences
containing precursors/targets, the rate to successfully retrieve
all the precursors and targets in each sentence is 73.4%. Some

Table 1. Precision, Recall, and F1 Scores for the Baseline
and SMR Models to Extract Materials, Precursors, and
Targetsa

model type precision (%) recall (%) F1 score (%)

baseline materials 78.3 68.3 73.0
precursors 60.9 82.2 70.0
targets 48.5 33.0 32.1

SMR materials 94.6 95.3 95.0
precursors 88.9 91.2 90.0
targets 85.9 83.4 84.5

aThe type “materials” include precursors, targets, and all other
materials.
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representative successful examples from the SMR model, such
as the recognition of the targets “LiBaBO3:Sm3+” and
“(0.725−x)BiFeO3−xBi(Ni0.5Mn0.5)O3−0.275BaTiO3 + 1
mol% MnO2”, are shown in Table 2.
We interpret the results as follows. In the baseline model,

only the information from the material entity itself is used,
resulting in low F1 scores for the extraction of precursors and
targets (70.0 and 32.1%, respectively). In contrast, the SMR
model achieves better F1 scores because Bi-LSTM is able to
infer the role of materials from the context. For example, as
discussed previously, the Bi-LSTM infers from the tokens “was
prepared from” that the following tokens probably refer to a
precursor(s). Likewise, the network predicts that the tokens
following “at 700 °C for” most likely are not precursors. For a
precursor with more than one metal/metalloid element, the
baseline model fails to recognize it regardless of the context,
while the SMR model can still identify the precursor nature of
this material.
However, some situations remain difficult for the SMR

model:

•Some material entities tokenized into multiple tokens
are not completely extracted. For example, the
incomplete pieces “(Ba1−x(K” and “Na)x/2Lax/
2)(Mg1/3Nb2/3)O3” are extracted instead of “(Ba1−
x(K or Na)x/2Lax/2)(Mg1/3Nb2/3)O3”, as listed in
Table 2. The identification of these materials is difficult
because of the syntactic variability and ambiguity of
multiword expressions (MWEs),34 which might be
improved by incorporating recent progress on MWE
identification such as the language-independent archi-
tecture proposed by Taslimipoor and Rohanian.35 The
number of training sentences containing MWE materials
might remain as an issue considering the relatively large
dataset36 used by Taslimipoor and Rohanian.35

•Some sentences are ambiguous to the SMR model
because of the limitations of the training set. For
example, the model correctly classifies “Y2O3” as a
precursor in “Y2O3 as a precursor was added” and
“Y2O3” as neither target nor precursor in “Y2O3 as a
grinding media was added”. However, in the sentence
“Y2O3 as a donor impurity was added”, the model does
not understand “donor impurity” and only assigns
“Y2O3” as an ordinary material rather than a precursor.
This situation might be improved by including more
contextual information in the input, such as the sentence
embeddings37 of previous and next sentences, and
contextualized word embeddings trained on a much
larger corpus (e.g., BERT38 and SciBERT39). Future
possible directions for research include training these
embedding models on papers specifically on materials
synthesis, although the training process may require a
significant manual time investment and considerable
computational resources.

•Misclassification can occur when the sentence is
written with a complicated structure. For example, the
target “Ba0.5Sr0.5CoxFe1−xO3−δ” is misclassified as a
precursor when the order of precursors and targets is
reversed or closely mixed in the sentence and the
materials around this word are all precursors, as shown
in Table 2. These sentences with a complicated structure
must often be treated on a case-by-case basis, and it is
difficult for an NLP model to pick up general rules to T
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correct for these errors. A potential solution is to
conduct selective sampling to annotate sentences with
complex syntax more efficiently, where only the ones
that a pretrained classifier is less confident with will be
sampled for annotation.40 Our current model lays a
foundation for selective sampling.

Considering the significant effort required to address each of
these problems and the decent performance achieved already,
we put these problems as future research directions. To retain
a higher precision in the dataset, we only used the recipes for
which a balanced chemical reaction can be reconstructed from
the extracted precursors and targets as described by Kononova
et al.27

3. SUBSTITUTION OF PRECURSORS
We first present the variety of the extracted precursors. An
intriguing question is how frequently researchers substitute one
precursor with another while retaining the target, which sheds
light on how similarly these precursors behave in a solid-state
reaction. We utilize a substitution model based on the work of
Hautier et al.46 and Yang and Ceder47 to quantify the
probability that two precursors are interchangeable.
3.1. Common and Uncommon Precursors. The SMR

model was applied to generate the dataset of 29,308 reactions
by analyzing 95,283 solid-state synthesis paragraphs (see the
work by Kononova et al.27 for details). Because a reaction can
be mentioned multiple times in the same paper, resulting in
multiple records in the dataset, the records were unified to
28,530 reactions, containing 71 different metal/metalloid
elements and 1,619 distinct precursors. Some precursors are
rarely used. Restricting the statistics to precursors used at least
30 times, there are 58 metal/metalloid elements and 182
precursors.
To visualize the variety of precursors, the precursors for each

metal/metalloid element are categorized by the anion (group)
class and counted by the number of corresponding reactions in
which they are used. The frequency of each anion class
normalized by the total number of reactions for an element is
shown in Figure 2. One precursor is usually used much more
frequently than other precursors for the same element, which
we denote as the common precursor. Figure 2 shows that for

alkali and alkaline earth elements, the common precursors are
carbonates, except for MgO which is the typical source for Mg.
For transition metals and other main group elements, the
common precursors are oxides except for B(OH)3 for B. In
general, the common precursor tends to be the compound that
is stable under ambient conditions, which is beneficial to the
purity and accurate weighting in experiments.48 Our
observation on the common precursors suggests that
laboratory chemists will prioritize shelf stability of precursors;
although we note that more reactive precursors can help to
facilitate synthesis reactions.
Sometimes, the decision to use an uncommon precursor is

motivated by an interesting advantage for a specific nontradi-
tional precursor. For example, in some cases precursors can
function as morphology templates; Zhao et al. reported that γ-
MnOOH nanorods were used to obtain LiMn2O4 nanorods,
whereas LiMn2O4 from electrolytic MnO2 (EMD) only
consisted of many irregular and aggregated particles.49 The
use of a lower melting point precursor can result in a target
with a smaller particle size; Liu et al. adopted Sr(NO3)2 instead
of SrCO3 to synthesize SrTiO3 nanocrystals.

50 An amorphous
precursor can facilitate the reaction process and minimize the
possibility of forming chemical segregations; Rivas Mercury et
al. utilized amorphous Al(OH)3 rather than Al2O3 in the
synthesis of Ca3Al2O6.

51 In these examples, there were
strategically designed precursors in order to achieve a
particular synthesis result. Collecting these individual-use
cases provides interesting insights into synthesis design.

3.2. Substitution Model. The large number of reactions
we obtained gives us the opportunity to understand to what
extent precursors are interchangeable. To measure the
probability that one precursor can be substituted by another
while retaining the target, we utilized a substitution model
similar to the one developed by Hautier et al.46 and used by
Yang and Ceder47 for structure prediction. For each pair of
precursors, the model counts the number of occurrences where
the same targets can be synthesized from either of the
precursors. The more frequently the two precursors are
interchanged, the more similar they are.
In the following part, we define the substitution model in a

mathematical form, and express the probability of finding a

Figure 2. Fraction of different classes of precursors corresponding to each element: (a) main group elements and (b) transition-metal elements.
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substitutional precursor pair Psub(pi
j,1,pi

j,2) as a sigmoid with
unknown parameter λ. Assuming the independence of
substitutions, we deconvolute the probability of finding
substitution between two lists of precursors Psub(RX,RX′) into
the product of Psub(pi

j,1,pi
j,2). At last, we maximize Psub(RX,RX′)

over substitution observations to solve λ and use it to calculate
substitution probability.
First, we define precursor substitution in a mathematical

form. Let E = (e1, e2, ..., en) be a pre-defined ordered list of all
the metal/metalloid elements given in the periodic table. We
assume each precursor contributes one metal/metalloid
element to targets. For the target RTar in a reaction synthesis
R = (RTar, RX), define the precursor list as RX = (p1, p2, ..., pn),
where pi is the precursor for element ei present in RTar;
otherwise pi is null. For a pair of reaction {R, R′}, if RTar = RTar′
and RX ≠ RX′ , we say precursor substitution occurs. Through
iterating over all the possible combinations of any two
reactions, we obtain a collection of N reaction pairs where
precursor substitution occurs, denoted as the data D = {{R,
R′}1, {R, R′}2, ..., {R, R′}N}. Our objective is now to find the
values of the pairwise precursor substitutions that maximize the
likelihood of D.
Next, we define the potential substitutional precursor pairs.

For element ei, denote the list of candidate precursors as (pi
1,

pi
2, ..., pi

mi), where mi is the total number of unique precursors.

We assume that potentially every precursor τpi
1 can be

substituted by any other one τpi
2, forming a substitutional

pair { τpi
1, τpi

2}, where 1 ≤ τ1 < τ2 ≤ mi. In total, there can be up

to = ( )M m
2i

i such pairs for element ei. For simplicity, we

assemble all substitutional pairs for all elements into one list
and renumber the pairs as {pi

j,1, pi
j,2}, where j = 1, ..., ∑i=1

n |Mi|.
Although the index i is not necessary, we retain it for clarity to
distinguish between elements. The probability that the pair
{pi

j,1, pi
j,2} can be found as a substitution occurs is written as

λ=P p p( , ) sigmoid( )i
j

i
j

jsub
,1 ,2

(1)

where λj is a parameter to be optimized. Assuming all
substitutional precursor pairs are independent of each other,
the probability that the pair of precursor lists {RX, RX′} can be
found as a substitution occurs is

′ =
λ∑ ′

P R R
Z

( , )
e

X X

R R

sub

1 ( , )j j j X X

(2)

where

′ =
{ ′ } = { }l

m
ooo
n
ooo

R R
R R p p

1 ( , )
1, , ,

0, otherwise
j X X

X i X i i
j

i
j

, ,
,1 ,2

(3)

and Z is the partition function for normalization, given by

∏= + λZ (1 e )
j

j

(4)

The value of λ = (λ1, λ2, ...) is obtained by maximizing the
likelihood over the data D

∑λ λ* = ′ |λ
=

P R Rargmax log (( , ) )
t

N

X X
t

1
sub

(5)

For those substitutional pairs not found in D, the value of λj
will be set to a common low value such that Psub(pi

j,1,pi
j,2) in eq

1 is close to zero.
Finally, we define the substitution probability. Here we

discuss one substitutional pair {pi
j,1, pi

j,2} and omit the index j
for simplicity. For a given reaction using precursor pi

1, the
probability that pi

1 is substitutable by pi
2 is

| =
∑ ≠

P p p P p
P p p

P p p
( ) ( substituted)

( , )

( , )i i i
i i

k i i
k

2 1 1 sub
1 2

1 sub
1

(6)

where P(pi
1 substituted) is a prior probability of pi

1 being
substitutable and is calculated as the number of reactions with
the substituted precursor pi

1 divided by the total number of all
reactions using pi

1. The fractional part in the right-hand side
accounts for the conditional probability that pi

1 is substitutable
by pi

2 when substitution occurs, which can be calculated with
eq 1. A small fraction of reactions (∼5%) which included
multiple metal/metalloid elements in the same precursors or
used multiple precursors for the same element were not
considered in this model.

3.3. Cross-Validation of the Substitution Model. We
evaluated the predictive power of the substitution model by
performing a cross-validation test on the generation of
alternative precursor lists. Cross-validation consists in training
the model on part of the available data (the training set) and
predicting back the remaining data (the validation set). Given
a target RTar and an existing precursor list RX in the training set,
we can propose an alternative precursor list RX′ to synthesis the
same target by replacing the precursors in RX with different
ones. With the substitution probability defined in eq 6, the
conditional probability of RX being substitutable by RX′ is given
by

∏′ | = |
∈ ∈ ′ ≠

P R R P p p( ) ( )X X
p R p R p p

i i
, ,

2 1

i X i X i i
1 2 1 2 (7)

If P(RX′ |RX) is higher than a given threshold, the proposed
RX′ will be accepted as a positive prediction of an alternative
precursor list. Otherwise, RX′ will be rejected as a negative
prediction. Applying this procedure on all possible RX′ , we
obtain all the positive and negative predictions and compare
with the validation set for evaluation. Two-thirds of the
reactions were used as the training set and the remaining one-
third of the data were used as the validation set. For example,
La0.7Ca0.3MnO3 is synthesized from La2O3, CaCO3, and
MnO2

52 in the training set. As a true positive prediction, the
substituted precursor list La2O3, CaO, and Mn(Ac)2

53 was also
found in the validation set. The true positive rate (TPR) and
false positive rate (FPR) were used as metrics to evaluate the
performance. The TPR and FPR of the prediction vary with
the probability threshold, as shown in Figure 3. Overall, the
TPR is higher than the FPR, indicating that the substitution
model has a predictive power in the selection of alternative
precursors and can effectively distinguish between the
substitutions leading to existing precursor lists and those
leading to nonexistent ones. Higher threshold values lead to
fewer false alarms but imply fewer true hits. An adequate
threshold can be found by selecting the one resulting in
relatively higher TPR and lower FPR.

3.4. Substitution Probability. The probability P(B|A)
that a precursor A is substituted by another precursor B for the
same metal/metalloid element is displayed as a heatmap in
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Figure 4, where the rows are A and the columns are B. The
color represents the probability of substitution defined in eq 6,
as shown by the color bar. For each element, the precursors are
ordered by the number of reactions using it from the most to
the least, that is, the first precursor is the common precursor
for each element. For the sake of simplicity, we merged the
precursor in its hydrated form and its anhydrous form, for
example LiOH·H2O and LiOH, based on the assumption that

water will evaporate early on during the solid-state heating
process. The rows for the common precursors usually display
relatively high substitution probability, which implies that
many uncommon precursors can be replaced with the common
precursors. Note that our analysis only indicates that
substitution can lead to the same target compound under
similar reaction conditions. The choice of different precursors
can still be justified as they might infer different properties on
the compound. For example, in the battery chemistry, LiOH is
sometimes preferred over Li2CO3 as it leaves less carbonate
residual on the surface of the particles.
Intuitively, hydroxides are similar to oxides; however, Figure

4 also captures some differences in this similarity for different
elements. For example, the common precursor for Al is the
oxide, whereas that for B is the hydroxide. Furthermore, the
probability of substitution between Al(OH)3 and Al2O3 is
considerably higher than between B(OH)3 and B2O3. The
number of reactions using Al2O3, Al(OH)3, B(OH)3, and B2O3

are 1,606, 148, 705, and 252, respectively, indicating that this
difference is not because of limited data. The reason behind
this is possibly correlated with the unique bonding in B2O3; B
is highly hybridized with O in B2O3, much more than Al with
O in Al2O3. This creates strong units in B2O3 held together by
relatively weak forces54 accounting for its low melting point

Figure 3. TPR and FPR with varying probability threshold in the
prediction of alternative precursor list. The green dashed line
indicates where the largest difference between the TPR and FPR
was observed.

Figure 4. Substitution probability P(B|A), which is the probability that the precursor A on the x-axis is substituted with precursor B on the y-axis:
(a) Li, (b) Ca and Ba, (c) B and Al, (d) Fe, (e) Co, (f) Mn. For example, we found that in 15% of reactions that use CaCO3, it could also be
substituted with another precursor to introduce Ca into the same targets; in 73% of the substitutions, the other precursor is CaO. The joint
probability that CaCO3 is substituted and the substitute is CaO is 11%. Because CaF2 is exclusively used for the synthesis of fluorine-containing
compounds, the probability that CaF2 is substituted to synthesize the same target is zero.

Chemistry of Materials pubs.acs.org/cm Article

https://dx.doi.org/10.1021/acs.chemmater.0c02553
Chem. Mater. 2020, 32, 7861−7873

7867

https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig3&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig4&ref=pdf
https://pubs.acs.org/doi/10.1021/acs.chemmater.0c02553?fig=fig4&ref=pdf
pubs.acs.org/cm?ref=pdf
https://dx.doi.org/10.1021/acs.chemmater.0c02553?ref=pdf


and high glass-forming ability.55 Although nitrates are often
used in solution-based synthesis, the chance to use nitrates in
solid-state synthesis is also considerable. Figure 4 shows that
for elements Ca, Ba, Al, and Fe, nitrates frequently replace the
common oxide or carbonate precursors. For example, the
probability of substituting Fe2O3 with Fe(NO3)3 is high. The
nitrates are used in various ways such as in conventional solid-
state synthesis,56 modified solid-state synthesis,57 combustion
synthesis,58 and sol-gel synthesis.59 Although carbonates
appear interchangeable with oxides, the metals in them
might not occupy the same valence state. The probability of
substitution between MnCO3 and MnO2 is higher than that
between MnCO3 and MnO, indicating that MnO2 is more
similar to MnCO3 than MnO.
To better understand how precursors are chosen for

elements with variable valence, for each Mn precursor with
reasonable frequency of use, we plot in Figure 5 the

distribution of valence states for Mn in the targets synthesized
from that precursor. The valence of Mn in the target
compound was determined by iterating all possible combina-
tions of valence states and finding the one resulting in the
charge neutrality for the compound.60 The width of each violin
plot is proportional to the probability density for different
valence states; the total area is proportional to the number of
reactions using the corresponding precursor. The adoption of
MnO, Mn2O3, and MnO2 is preferred in the literature to
synthesize targets with similar valence states, that is, most Mn
ions in targets from MnO, Mn2O3, and MnO2 correspond to

2+, 3+, and 3+ to 4+, respectively. Different from the oxides,
the valence states in targets from MnCO3 and Mn(Ac)2 (Ac
stands for acetate anion CH3COO−) are more evenly
distributed, indicating that the use of MnCO3 and Mn(Ac)2
is less dependent on the valence states in the targets. This
appears reasonable given the ease by which MnCO3 and
Mn(Ac)2 decompose when heated and Mn2+ can be oxidized
to whatever is stable in the high-component solid under proper
oxygen chemical potential. This observation is consistent with
the higher probability of substitution between MnCO3 and
MnO2 as aforementioned. By comparing the number of
reactions using different precursors, it should be noted that the
most frequently used Mn precursor to synthesize targets with
Mn valence states lower than 3+ remains MnO2, which is the
common precursor for Mn, even though MnO2 is more
frequently used to synthesize targets with Mn valence states
between 3+ and 4+. One possible reason is that Mn at high
temperature can rapidly reduce or oxidize driven by the extent
of entropic stabilization of O2 on the right-hand side of the
reaction MnO2 + ΔH⇌MnO2−x + x/2O2. In other words, the
metal valence state in the precursor does not necessarily
impose the valence state in the target in solid-state synthesis.

4. SIMILARITY OF PRECURSORS

While substitutionability, discussed in the previous section,
indicates that a solid-state reaction to the target is possible with
the substitutional precursors, it makes no statement as to
whether the reaction condition needs to be modified. In the
following section, we define the similarity of precursors based
on the substitutionability as well as the extent to which the
reaction conditions are similar. At this point, we only use
temperature to describe the reaction condition considering the
amount of effort, but one could extend this concept to capture
other synthesis info such as atmosphere, time, number of
operations, milling speed, and so forth.

4.1. Metric for Similarity. Two features, the substitution
probability and the distribution of synthesis temperatures of
the reactions that use a particular precursor, were utilized to
characterize the similarity of precursors.
As introduced in Section 3, a precursor pi

1 is substituted by
another precursor pi

2 with the probability P(pi
2|pi

1). We use the
geometric average of P(pi

2|pi
1) and P(pi

1|pi
2) to balance the

asymmetric situations where pi
1 or pi

2 is substituted. The
distance accounting for the substitution probability is defined
as

Figure 5. Mn valence states in targets from Mn(Ac)2 (manganese
acetate), MnCO3, MnO, Mn3O4, Mn2O3, and MnO2. The width in
each violin plot is proportional to the probability density for valence
at different values. The total area of each violin plot is proportional to
the number of reactions using the corresponding precursor.

Figure 6. Highest firing temperature in the synthesis process for: (a) Fe2O3 and FeC2O4 and (b) CaCO3 and CaO.
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= − | |d p p P p p P p p( , ) 1 ( ) ( )i i i i i isub
1 2 1 2 2 1

(8)

where pi
1 and pi

2 are two precursors for element ei.
A different precursor can be used with a different synthesis

temperature. As an example, the distribution of the highest
firing temperature used in synthesis reactions with two
different Fe or Ca precursors is presented in Figure 6. The
temperatures were extracted by regular expression matching in
the corresponding synthesis paragraphs.27 For example, Figure
6 shows that the typical firing temperature is much lower when
FeC2O4 is used as a precursor than when Fe2O3 is, whereas the
firing temperature for CaO is comparable to that for CaCO3.
Utilizing the overlap between the distributions of temperatures
for two precursors, a distance is defined as follows to describe
the similarity between the two precursors.

=

−

d p p( , ) 1

overlapping area of two temperature distribution
total area of two temperature distribution

i itemp
1 2

(9)

Both dsub in eq 8 and dtemp in eq 9 satisfy the property that 0
≤ di ≤ 1. We utilized the Euclidean distance to define a multi-
feature distance metric61,62 to combine the two features
together. The distance between a pair of precursors for the
same element is defined as

= +D p p d p p d p p( , ) ( , ) ( , )i i i i i i
1 2

sub
1 2 2

temp
1 2 2

(10)

The multifeature aspect of this distance metric is general; it
is straightforward to include additional features into this
distance metric as new relevant features are considered. The
current two representative features are selected because the
substitution probability reflects the comparison of overall
reactions in synthesis, and temperature is the most important
parameter to activate these reactions. Finally, to visualize the
similarity of precursors for the same element, we performed
hierarchical clustering based on the pairwise distance D(pi

1,pi
2)

using Ward’s minimum variance method.63 The hierarchical
clustering method iteratively identifies two nearest clusters and
merges them until only one supercluster is left.

4.2. Similarity of Precursors. Based on the distance
defined in eq 10, precursors for the same elements were
hierarchically clustered, and the similarities between them are
displayed as dendrograms in Figure 7. The vertical axis
represents the distance between two precursors or the distance
between two clusters. In general, similar precursors will be
drawn closer to each other on the horizontal axis.
Generally, the cluster with the smallest internal distance

includes the common precursors, indicated using bold fonts in
Figure 7. Simple binary fluorides and sulfides are far away from
the common precursors and are typically used as source of F
and S in target materials so that HF and H2S can be avoided.
Metals are sometimes used as precursors directly; however,

Figure 7. Clusters of precursors for (a) Li, (b) Ca, (c) Ba, (d) Fe, (e) Co, and (f) Mn by similarity. The common precursors are indicated using
bold fonts.
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they are far away from the common precursors, indicating that
metals and metal oxides tend to be used as precursors for
different classes of materials. There is a trend that precursors
are clustered following the order: oxide, carbonate, nitrate, and
acetate, where the adjacent precursors are more similar (e.g.,
carbonate and oxide, or carbonate and nitrate) and the
nonadjacent precursors are less similar (e.g. oxide and acetate),
though there are variations to this for some elements. When
the common precursor is a carbonate, the order may change to
nitrate, carbonate, oxide, and acetate (e.g., Ba), where the
carbonate and the nitrate are more similar than the carbonate
and the oxide, but the carbonate still sits between the nitrate
and the oxide. The similarity between different classes is
possibly correlated with the different bonding strength
between the cations and anions, which can be indicated by
the order of melting points, namely, oxide > carbonate >
nitrate/acetate.
However, there are also some observations that are not easy

to immediately rationalize. For Li, it is the hydroxide rather
than oxide or nitrate closest to the carbonate, whereas for Ca
and Ba, the hydroxides are even absent, which means
Ca(OH)2 and Ba(OH)2 are rarely used. This difference may
originate from the methods used to prepare these precursors
being different, resulting in different availabilities. One
practical clue is that Li2O is more expensive than LiOH;
Li2O (≥95% purity) is $378.00 for 100 g ($8.10/g of Li), while
lithium hydroxide monohydrate (≥95% purity) is $181.00 for
2 kg ($0.54/g of Li) from the chemical supplier Strem
Chemicals.64 It is also observed that LiAc and LiH2PO4, as well
as FeC2O4 and FePO4, are clustered together because they are
frequently used to synthesize the extensively studied cathode
material LiFePO4, reflecting possible application bias in the
data. In addition, oxides are similar to each other for variable
valence elements, but the most similar precursor to the
common oxide is not necessarily an oxide. For example, the
oxides of Mn are clustered together, ranging from MnO2 to
MnO. However, the most similar precursor to MnO2 is
MnCO3, as discussed in Section 3.4. Similarly, the nitrate
Fe(NO3)3 is more similar to Fe2O3 than the mixed-valence
oxide Fe3O4 to Fe2O3. There are many factors in the selection
of precursors, including both scientific reasons such as
bonding, reactivity, and melting point, and anthropogenic
reasons65 such as literature success, convenience, applications,
price, and human bias. The data in this work are a reflection of
all those factors; it is not entirely clear how to deconvolute all
these issues. An interesting scientific advance would be to
identify the precursors that are chemically compelling while
avoiding the implicit anthropogenic biases. This work provides
a historical statistical analysis to serve as a baseline comparison.
The similarity could help guide the selection of precursors

when researchers alter existing recipes by replacing precursors.
For a starting experiment, it might be profitable to pick
precursors similar to what has been tried before. On the other
hand, when the synthesis is not going well, it is best to use a
very different precursor in order to diversify the synthesis
space. If there are many possible combinations of precursors,
the quantitative value of the similarity could also serve as a
reference to rank them. Currently, the creation of new recipes
is in principle limited to targets already in our dataset.
Therefore, it is also important in the future to develop
similarity among targets. In that way, it would be possible to
predict synthesis recipes for new target materials by evaluating
the similarity with targets for which synthesis is known, a

process that is very similar to the current literature-based
approach for the synthesis of novel materials.

5. CONCLUSIONS
In this study, we proposed a two-step model based on Bi-
LSTM to extract the precursors and targets in inorganic solid-
state synthesis reactions as reported in 86,554 literature papers.
The F1 scores for the extraction of precursors and targets are
90.0 and 84.5%, respectively. Through comparison with a
simple baseline model and showing how Bi-LSTM takes
advantage of not only the written expression of words but also
the surrounding context, we illustrated why the use of Bi-
LSTM is suitable for our CNER problem.
Using the extracted data, we conducted a meta-analysis on

the similarities and differences between precursors. The
statistics on the frequency to use different classes of precursors
shows that each element usually has a common precursor to
bring it into a target compound. A substitution model is used
to quantify the probability of substituting one precursor with
another while the target remains unchanged. By establishing
distance metrics from the substitution model and the
distribution of synthesis temperature, precursors for the same
element were clustered to show the similarities between these
precursors. This hierarchical clustering demonstrates that
chemical domain knowledge of solid-state synthesis can be
captured from text mining and provides a foundation for
developing a predictive synthesis model.

6. METHODS
6.1. Data Preparation. Borges66 was used to scrape papers from

websites of main publishers under agreements made with them.
LimeSoup67 was used to parse the papers from HTML content into
plain text. Solid-state synthesis paragraphs were identified with the
synthesis paragraph classification model68 by Huo et al.15

6.2. CNER and Similarity Analysis. The SMR model was
developed with Theano69 and TensorFlow70 based on the work by
Lample et al.29 An internal crowdsourcing website similar to Amazon
Mechanical Turk71 was built for data annotation. ChemDataEx-
tractor20 was used for text tokenization. Gensim72 was used to train
the Word2Vec30,31 embeddings. The precursor substitution model
was adapted from the ion substitution model developed by Hautier et
al.46 and Yang and Ceder47 as in pymatgen.60 All coding was with
Python 3.73 More details of the methods are introduced in each
section.
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