A unified framework of density-based clustering for semi-supervised classification (2018)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1145/3221269.3223037
- Subjects: APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES; ALGORITMOS ÚTEIS E ESPECÍFICOS
- Keywords: Semi-supervised classification; density-based clustering
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Proceedings
- Conference titles: International Conference on Scientific and Statistical Database Management - SSDBM
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GERTRUDES, Jadson Castro et al. A unified framework of density-based clustering for semi-supervised classification. 2018, Anais.. New York: ACM, 2018. Disponível em: https://doi.org/10.1145/3221269.3223037. Acesso em: 20 jan. 2026. -
APA
Gertrudes, J. C., Zimek, A., Sander, J., & Campello, R. J. G. B. (2018). A unified framework of density-based clustering for semi-supervised classification. In Proceedings. New York: ACM. doi:10.1145/3221269.3223037 -
NLM
Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified framework of density-based clustering for semi-supervised classification [Internet]. Proceedings. 2018 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1145/3221269.3223037 -
Vancouver
Gertrudes JC, Zimek A, Sander J, Campello RJGB. A unified framework of density-based clustering for semi-supervised classification [Internet]. Proceedings. 2018 ;[citado 2026 jan. 20 ] Available from: https://doi.org/10.1145/3221269.3223037 - Ensembles for unsupervised outlier detection: challenges and research questions
- Automatic aspect discrimination in data clustering
- Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis
- An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part I: linear and uncertain models
- Communities validity: methodical evaluation of community mining algorithms
- Efficient computation of multiple density-based clustering hierarchies
- Relative validity criteria for community mining algorithms
- Model selection for semi-supervised clustering
- On the selection of appropriate distances for gene expression data clustering
- Relative validity criteria for community mining algorithms
Informações sobre o DOI: 10.1145/3221269.3223037 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas