Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions (2009)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1109/TAC.2009.2031721
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher place: Piscataway
- Date published: 2009
- Source:
- Título: IEEE Transactions on Automatic Control
- ISSN: 0018-9286
- Volume/Número/Paginação/Ano: v. 54, n. 12, p. 2757-2772, dez. 2009
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ROSA, Alex da e CAMPELLO, Ricardo José Gabrielli Barreto e AMARAL, Wagner C. Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions. IEEE Transactions on Automatic Control, v. 54, n. 12, p. 2757-2772, 2009Tradução . . Disponível em: https://doi.org/10.1109/TAC.2009.2031721. Acesso em: 23 jan. 2026. -
APA
Rosa, A. da, Campello, R. J. G. B., & Amaral, W. C. (2009). Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions. IEEE Transactions on Automatic Control, 54( 12), 2757-2772. doi:10.1109/TAC.2009.2031721 -
NLM
Rosa A da, Campello RJGB, Amaral WC. Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions [Internet]. IEEE Transactions on Automatic Control. 2009 ; 54( 12): 2757-2772.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1109/TAC.2009.2031721 -
Vancouver
Rosa A da, Campello RJGB, Amaral WC. Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions [Internet]. IEEE Transactions on Automatic Control. 2009 ; 54( 12): 2757-2772.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1109/TAC.2009.2031721 - A cluster based hybrid feature selection approach
- A unified framework of density-based clustering for semi-supervised classification
- Active semi-supervised classification based on multiple clustering hierarchies
- Clustering of RNA-Seq samples: comparison study on cancer data
- On the internal evaluation of unsupervised outlier detection
- Takagi-Sugeno fuzzy models in the framework of orthonormal basis functions
- Automatic aspect discrimination in data clustering
- Ensembles for unsupervised outlier detection: challenges and research questions
- Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis
- Communities validity: methodical evaluation of community mining algorithms
Informações sobre o DOI: 10.1109/TAC.2009.2031721 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas