Density-based clustering validation (2014)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher: SIAM
- Publisher place: Philadelphia
- Date published: 2014
- ISBN: 9781611973440
- Source:
- Título: Proceedings
- Conference titles: SIAM International Conference on Data Mining - SDM
-
ABNT
MOULAVI, Davoud et al. Density-based clustering validation. 2014, Anais.. Philadelphia: SIAM, 2014. . Acesso em: 10 fev. 2026. -
APA
Moulavi, D., Jaskowiak, P. A., Campello, R. J. G. B., Zimek, A., & Sander, J. (2014). Density-based clustering validation. In Proceedings. Philadelphia: SIAM. -
NLM
Moulavi D, Jaskowiak PA, Campello RJGB, Zimek A, Sander J. Density-based clustering validation. Proceedings. 2014 ;[citado 2026 fev. 10 ] -
Vancouver
Moulavi D, Jaskowiak PA, Campello RJGB, Zimek A, Sander J. Density-based clustering validation. Proceedings. 2014 ;[citado 2026 fev. 10 ] - Similarity measures for comparing biclusterings
- Relative validity criteria for community mining algorithms
- Active learning strategies for semi-supervised DBSCAN
- On the evaluation of outlier detection and one-class classification methods
- An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part II: non-linear models
- Evaluating correlation coefficients for clustering gene expression profiles of cancer
- A simpler and more accurate AUTO-HDS framework for clustering and visualization of biological data
- Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions
- A cluster based hybrid feature selection approach
- A unified framework of density-based clustering for semi-supervised classification
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas