Similarity measures for comparing biclusterings (2014)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1109/TCBB.2014.2325016
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- Publisher place: Los Alamitos
- Date published: 2014
- Source:
- Título: IEEE/ACM Transactions on Computational Biology and Bioinformatics
- ISSN: 1545-5963
- Volume/Número/Paginação/Ano: v. 11, n. 5, p. 942-954, set./out. 2014
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
HORTA, Danilo e CAMPELLO, Ricardo José Gabrielli Barreto. Similarity measures for comparing biclusterings. IEEE/ACM Transactions on Computational Biology and Bioinformatics, v. 11, n. 5, p. 942-954, 2014Tradução . . Disponível em: https://doi.org/10.1109/TCBB.2014.2325016. Acesso em: 09 fev. 2026. -
APA
Horta, D., & Campello, R. J. G. B. (2014). Similarity measures for comparing biclusterings. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 11( 5), 942-954. doi:10.1109/TCBB.2014.2325016 -
NLM
Horta D, Campello RJGB. Similarity measures for comparing biclusterings [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2014 ; 11( 5): 942-954.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1109/TCBB.2014.2325016 -
Vancouver
Horta D, Campello RJGB. Similarity measures for comparing biclusterings [Internet]. IEEE/ACM Transactions on Computational Biology and Bioinformatics. 2014 ; 11( 5): 942-954.[citado 2026 fev. 09 ] Available from: https://doi.org/10.1109/TCBB.2014.2325016 - Density-based clustering validation
- Relative validity criteria for community mining algorithms
- Active learning strategies for semi-supervised DBSCAN
- On the evaluation of outlier detection and one-class classification methods
- An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part II: non-linear models
- Evaluating correlation coefficients for clustering gene expression profiles of cancer
- A simpler and more accurate AUTO-HDS framework for clustering and visualization of biological data
- Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions
- A cluster based hybrid feature selection approach
- A unified framework of density-based clustering for semi-supervised classification
Informações sobre o DOI: 10.1109/TCBB.2014.2325016 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas