Change point detection for high-dimensional regression data with l1-regularization (2016)
- Autor:
- Autor USP: LEONARDI, FLORENCIA GRACIELA - IME
- Unidade: IME
- Assunto: ESTATÍSTICA E PROBABILIDADE
- Language: Inglês
- Imprenta:
- Publisher: ICMC-USP
- Publisher place: São Carlos, SP
- Date published: 2016
- Source:
- Título: Book of abstracts
- Conference titles: Workshop on Probabilistic and Statistical Methods - WPSM
-
ABNT
LEONARDI, Florencia Graciela. Change point detection for high-dimensional regression data with l1-regularization. 2016, Anais.. São Carlos, SP: ICMC-USP, 2016. Disponível em: http://wpsm.icmc.usp.br/4WPSM/Program_4WPSM.pdf. Acesso em: 03 nov. 2024. -
APA
Leonardi, F. G. (2016). Change point detection for high-dimensional regression data with l1-regularization. In Book of abstracts. São Carlos, SP: ICMC-USP. Recuperado de http://wpsm.icmc.usp.br/4WPSM/Program_4WPSM.pdf -
NLM
Leonardi FG. Change point detection for high-dimensional regression data with l1-regularization [Internet]. Book of abstracts. 2016 ;[citado 2024 nov. 03 ] Available from: http://wpsm.icmc.usp.br/4WPSM/Program_4WPSM.pdf -
Vancouver
Leonardi FG. Change point detection for high-dimensional regression data with l1-regularization [Internet]. Book of abstracts. 2016 ;[citado 2024 nov. 03 ] Available from: http://wpsm.icmc.usp.br/4WPSM/Program_4WPSM.pdf - Some upper bounds for the rate of convergence of penalized likelihood context tree estimators
- Consistent model selection for the degree corrected stochastic blockmodel
- Cadeias estocásticas parcimoniosas com aplicações à classificação e filogenia das seqüências de proteínas
- Computationally efficient change point detection for high-dimensional regression
- Estatística para dados em alta dimensão
- Estimadores regularizados para problemas de alta dimensão
- Advances in probability and mathematical statistics
- Loss of memory of hidden Markov models and Lyapunov exponents
- Nonparametric statistical inference for the context tree of a stationary ergodic process
- Comments on: a random forest guided tour
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas