Exportar registro bibliográfico


Metrics:

Regulatory variants of FOXG1 in the context of its topological domain organisation (2017)

  • Authors:
  • Autor USP: MORGANTE, ANGELA MARIA VIANNA - IB
  • Unidade: IB
  • DOI: 10.1038/s41431-017-0011-4
  • Subjects: MUTAÇÃO GENÉTICA; CÉLULAS-TRONCO; GENOMAS; CROMOSSOMOS; NEUROGENÉTICA; GENÉTICA MÉDICA
  • Language: Inglês
  • Imprenta:
  • Source:
  • Acesso à fonteDOI
    Informações sobre o DOI: 10.1038/s41431-017-0011-4 (Fonte: oaDOI API)
    • Este periódico é de assinatura
    • Este artigo é de acesso aberto
    • URL de acesso aberto
    • Cor do Acesso Aberto: green

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas

    • ABNT

      MEHRJOUY, Mana M; FONSECA, Ana Carolina S; EHMKE, Nadja; et al. Regulatory variants of FOXG1 in the context of its topological domain organisation. European Journal of Human Genetics, London, 2017. Disponível em: < http://dx.doi.org/10.1038/s41431-017-0011-4 > DOI: 10.1038/s41431-017-0011-4.
    • APA

      Mehrjouy, M. M., Fonseca, A. C. S., Ehmke, N., Paskulin, G., Novelli, A., Benedicenti, F., et al. (2017). Regulatory variants of FOXG1 in the context of its topological domain organisation. European Journal of Human Genetics. doi:10.1038/s41431-017-0011-4
    • NLM

      Mehrjouy MM, Fonseca ACS, Ehmke N, Paskulin G, Novelli A, Benedicenti F, Mencarelli MA, Renieri A, Busa T, Missirian C, Hansen C, Abe KT, Speck-Martins CE, Vianna-Morgante AM, Bak M, Tommerup N. Regulatory variants of FOXG1 in the context of its topological domain organisation [Internet]. European Journal of Human Genetics. 2017 ;Available from: http://dx.doi.org/10.1038/s41431-017-0011-4
    • Vancouver

      Mehrjouy MM, Fonseca ACS, Ehmke N, Paskulin G, Novelli A, Benedicenti F, Mencarelli MA, Renieri A, Busa T, Missirian C, Hansen C, Abe KT, Speck-Martins CE, Vianna-Morgante AM, Bak M, Tommerup N. Regulatory variants of FOXG1 in the context of its topological domain organisation [Internet]. European Journal of Human Genetics. 2017 ;Available from: http://dx.doi.org/10.1038/s41431-017-0011-4

    Referências citadas na obra
    Dixon JR, Selvaraj S, Yue F, et al. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature. 2012;485:376–80.
    Rao SSP, Huntley MH, Durand NC, et al. A 3D map of the human genome at kilobase resolution reveals principles of chromatin looping. Cell. 2014;159:1665–80.
    Miyoshi G, Fishell G. Dynamic FoxG1 expression coordinates the integration of multipolar pyramidal neuron precursors into the cortical plate. Neuron. 2012;74:1045–58.
    Lupiáñez DG, Kraft K, Heinrich V, et al. HHS public access. 2016;161:1012–25.
    Shoichet SA, Kunde SA, Viertel P, et al. Haploinsufficiency of novel FOXG1B variants in a patient with severe mental retardation, brain malformations and microcephaly. Hum Genet. 2005;117:536–44.
    Alosi D, Klitten LL, Bak M, Hjalgrim H, Møller RS, Tommerup N. Dysregulation of FOXG1 by ring chromosome 14. Mol Cytogenet. 2015;8:24.
    Redin C, Brand H, Collins RL, et al. The genomic landscape of balanced cytogenetic abnormalities associated with human congenital anomalies. Nat Genet. 2016;49:36–45.
    Allou L, Lambert L, Amsallem D, et al. 14q12 and severe Rett-like phenotypes: new clinical insights and physical mapping of FOXG1-regulatory elements. Eur J Hum Genet. 2012;20:1216–23.
    Lettice LA, Daniels S, Sweeney E, et al. Enhancer-adoption as a mechanism of human developmental disease. Hum Mutat. 2011;32:1492–9.
    Ibn-Salem J, Köhler S, Love MI, et al. Deletions of chromosomal regulatory boundaries are associated with congenital disease. Genome Biol. 2014;15:423.
    Schmitt AD, Hu M, Jung I, et al. A compendium of chromatin contact maps reveals spatially active regions in the human genome. Cell Rep. 2016;17:2042–59.
    Dekker J, Marti-Renom MA, Mirny LA. Exploring the three-dimensional organization of genomes: interpreting chromatin interaction data. Nat Rev Genet. 2013;14:390–403.
    Dixon JR, Jung I, Selvaraj S, et al. Chromatin architecture reorganization during stem cell differentiation. Nature. 2015;518:331–6.
    Kimura-Yoshida C, Kitajima K, Oda-Ishii I, et al. Characterization of the pufferfish Otx2 cis-regulators reveals evolutionarily conserved genetic mechanisms for vertebrate head specification. Development. 2004;131:57–71.
    Kleinjan DA, Van Heyningen V. Long-range control of gene expression: emerging mechanisms and disruption in disease. Am J Hum Genet. 2005;76:8–32.
    Kortüm F, Das S, Flindt M, et al. The core FOXG1 syndrome phenotype consists of postnatal microcephaly, severe mental retardation, absent language, dyskinesia, and corpus callosum hypogenesis. J Med Genet. 2011;48:396–406.
    Papa FT, Mencarelli MA, Caselli R, et al. A 3 Mb deletion in 14q12 causes severe mental retardation, mild facial dysmorphisms and rett-like features. Am J Med Genet Part A. 2008;146:1994–8.
    Ariani F, Hayek G, Rondinella D, et al. FOXG1 is responsible for the congenital variant of Rett syndrome. Am J Hum Genet. 2008;83:89–93.
    Mencarelli MA, Spanhol-Rosseto A, Artuso R, et al. Novel FOXG1 mutations associated with the congenital variant of Rett syndrome. J Med Genet. 2010;47:49–53.
    Yeung A, Bruno D, Scheffer IE, et al. 4.45 Mb microduplication in chromosome band 14q12 including FOXG1 in a girl with refractory epilepsy and intellectual impairment. Eur J Med Genet. 2009;52:440–2.
    Takagi M, Sasaki G, Mitsui T, Honda M, Tanaka Y, Hasegawa T. A 2.0Mb microdeletion in proximal chromosome 14q12, involving regulatory elements of FOXG1, with the coding region of FOXG1 being unaffected, results in severe developmental delay, microcephaly, and hypoplasia of the corpus callosum. Eur J Med Genet. 2013;56:526–8.
    Ellaway CJ, Ho G, Bettella E, et al. 14q12 microdeletions excluding FOXG1 give rise to a congenital variant Rett syndrome-like phenotype. Eur J Hum Genet. 2012;21:522–7.
    Goubau C, Devriendt K, Van der Aa N, et al. Platelet defects in congenital variant of Rett syndrome patients with FOXG1 mutations or reduced expression due to a position effect at 14q12. Eur J Hum Genet. 2013;21:1349–55.
    Bisgaard A, Kirchhoff M, Tumer Z, et al. Additional chromosomal abnormalities in patients with a previously detected abnormal karyotype, mental retardation, and dysmorphic features. Am J Med Genet. 2006;140:2180–7.
    Adesina MD, Veo BL, Girard Courteau G, et al. FOXG1 expression shows correlation with neuronal differentiation in cerebellar development, aggressive phenotype in medulloblastomas, and survival in a xenograft model of medulloblastom. Hum Pathol. 2015;46:1859–71.
    Ahlgren S, Vogt P, Bronner-Fraser M. Excess FoxG1 causes overgrowth of the neural tube. J Neurobiol. 2003;57:337–49.
    Brunetti-Pierri N, Paciorkowski A, Ciccone R, et al. Duplications of FOXG1 in 14q12 are associated with developmental epilepsy, mental retardation, and severe speech impairment. Eur J Hum Genet. 2011;19:102–7.
    Amor D, Burgess T, Tan T, Pertile M. Questionable pathogenicity of FOXG1 duplication. Eur J Hum Genet. 2012;20:595–6.
    Won H, Torre-Ubieta L, Stein JL, et al. Chromosome conformation elucidates regulatory relationships in developing human brain. Nature. 2016;538:1–20.
    Boggio EM, Pancrazi L, Gennaro M, et al. Visual impairment in FOXG1-mutated individuals and mice. Neuroscience. 2016;324:496–508.
    Shen L, Nam H, Song P, Moore HAS. Results in impaired neurogenesis in the postnatal hippocampus and contextual memory deficits. Hippocampus. 2006;16:875–90.
    Thurman R, Rynes E, Humbert H, et al. The accessible chromatin landscape of the human genome. Nature. 2012;489:75–82.
    Zepeda-Mendoza CJ, Ibn-Salem J, Kammin T, et al. Computational prediction of position effects of apparently balanced human chromosomal rearrangements. Am J Hum Genet. 2017;101:206–17.
    Visel A, Minovitsky S, Dubchak I, Pennacchio LA. VISTA enhancer browser-a database of tissue-specific human enhancers. Nucleic Acids Res. 2007;35:D88–92.

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2020