Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework (2017)
- Authors:
- USP affiliated authors: LEJBMAN, ALFREDO GOLDMAN VEL - IME ; BRUEL, PEDRO HENRIQUE ROCHA - IME ; GONZALEZ, MARCOS TULIO AMARIS - IME
- Unidade: IME
- DOI: 10.1002/cpe.3973
- Assunto: COMPUTAÇÃO GRÁFICA
- Keywords: autotuning; GPUs; compilers; CUDA; OpenTuner
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher place: Chichester
- Date published: 2017
- Source:
- Título: Concurrency and Computation: Practice and Experience
- ISSN: 1532-0626
- Volume/Número/Paginação/Ano: v. 29, n. 22, p. 1-15, 2017
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BRUEL, Pedro e AMARÍS, Marcos e GOLDMAN, Alfredo. Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework. Concurrency and Computation: Practice and Experience, v. 29, n. 22, p. 1-15, 2017Tradução . . Disponível em: https://doi.org/10.1002/cpe.3973. Acesso em: 22 jan. 2026. -
APA
Bruel, P., Amarís, M., & Goldman, A. (2017). Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework. Concurrency and Computation: Practice and Experience, 29( 22), 1-15. doi:10.1002/cpe.3973 -
NLM
Bruel P, Amarís M, Goldman A. Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework [Internet]. Concurrency and Computation: Practice and Experience. 2017 ; 29( 22): 1-15.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1002/cpe.3973 -
Vancouver
Bruel P, Amarís M, Goldman A. Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework [Internet]. Concurrency and Computation: Practice and Experience. 2017 ; 29( 22): 1-15.[citado 2026 jan. 22 ] Available from: https://doi.org/10.1002/cpe.3973 - Autotuning under tight budget constraints: a transparent design of experiments approach
- Autotuning LLVM optimization passes for matrix multiplication in Rust
- Performance prediction of application executed on GPUs using a simple analytical model and machine learning techniques
- OpenMP is not as easy as it appears
- Heart rate variability predicts the subject-driven cognitive states
- A reproducible I/O analyzer
- Message from the program committee co-chairs. [Apresentação]
- Useful statistical methods for human factors research in software engineering: a discussion on validation with quantitative data
- Trying to increase the mature use of agile practices by Group Development Psychology Training: an experiment
- Scheduling moldable BSP tasks on clouds
Informações sobre o DOI: 10.1002/cpe.3973 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 2859520.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
