OpenMP is not as easy as it appears (2016)
- Authors:
- USP affiliated authors: LEJBMAN, ALFREDO GOLDMAN VEL - IME ; GONÇALVES, ROGÉRIO APARECIDO - IME ; GONZALEZ, MARCOS TULIO AMARIS - IME ; OKADA, THIAGO KENJI - IME
- Unidade: IME
- DOI: 10.1109/HICSS.2016.710
- Subjects: PROGRAMAÇÃO PARALELA; ARQUITETURAS PARALELAS
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway
- Date published: 2016
- Source:
- Título: Proceedings
- ISSN: 1530-1605
- Conference titles: Hawaii International Conference on System Sciences - HICSS
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
GONÇALVES, Rogério Aparecido et al. OpenMP is not as easy as it appears. 2016, Anais.. Piscataway: IEEE, 2016. Disponível em: https://doi.org/10.1109/HICSS.2016.710. Acesso em: 17 fev. 2026. -
APA
Gonçalves, R. A., Amarís, M., Okada, T. K., Bruel, P., & Goldman, A. (2016). OpenMP is not as easy as it appears. In Proceedings. Piscataway: IEEE. doi:10.1109/HICSS.2016.710 -
NLM
Gonçalves RA, Amarís M, Okada TK, Bruel P, Goldman A. OpenMP is not as easy as it appears [Internet]. Proceedings. 2016 ;[citado 2026 fev. 17 ] Available from: https://doi.org/10.1109/HICSS.2016.710 -
Vancouver
Gonçalves RA, Amarís M, Okada TK, Bruel P, Goldman A. OpenMP is not as easy as it appears [Internet]. Proceedings. 2016 ;[citado 2026 fev. 17 ] Available from: https://doi.org/10.1109/HICSS.2016.710 - Avaliação do impacto da comunicação intra e entre-nós em nuvens computacionais para aplicações de alto desempenho
- A runtime for code offloading on modern heterogeneous platforms
- Autotuning CUDA compiler parameters for heterogeneous applications using the OpenTuner framework
- Performance prediction of application executed on GPUs using a simple analytical model and machine learning techniques
- The influence of organizational factors on inter-team knowledge sharing effectiveness in agile environments
- Improving the performance of actor model runtime environments on multicore and manycore platforms
- Towards automatic actor pinning on multi-core architectures
- A simple BSP-based model to predict execution time in GPU applications
- A comparison of GPU execution time prediction using machine learning and analytical modeling
- Message from the program committee co-chairs. [Apresentação]
Informações sobre o DOI: 10.1109/HICSS.2016.710 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
