Active semi-supervised classification based on multiple clustering hierarchies (2016)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1109/DSAA.2016.9
- Subjects: INTELIGÊNCIA ARTIFICIAL; APRENDIZADO COMPUTACIONAL; RECONHECIMENTO DE PADRÕES
- Keywords: active learning; classification
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Los Alamitos
- Date published: 2016
- Source:
- Título: Proceedings
- Conference titles: IEEE International Conference on Data Science and Advanced Analytics - DSAA
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
BATISTA, Antônio J. L e CAMPELLO, Ricardo José Gabrielli Barreto e SANDER, Jörg. Active semi-supervised classification based on multiple clustering hierarchies. 2016, Anais.. Los Alamitos: IEEE, 2016. Disponível em: https://doi.org/10.1109/DSAA.2016.9. Acesso em: 05 jan. 2026. -
APA
Batista, A. J. L., Campello, R. J. G. B., & Sander, J. (2016). Active semi-supervised classification based on multiple clustering hierarchies. In Proceedings. Los Alamitos: IEEE. doi:10.1109/DSAA.2016.9 -
NLM
Batista AJL, Campello RJGB, Sander J. Active semi-supervised classification based on multiple clustering hierarchies [Internet]. Proceedings. 2016 ;[citado 2026 jan. 05 ] Available from: https://doi.org/10.1109/DSAA.2016.9 -
Vancouver
Batista AJL, Campello RJGB, Sander J. Active semi-supervised classification based on multiple clustering hierarchies [Internet]. Proceedings. 2016 ;[citado 2026 jan. 05 ] Available from: https://doi.org/10.1109/DSAA.2016.9 - Texto sistematizado
- Modelagem e controle utilizando bases de funções ortonormais.
- Automatic aspect discrimination in relational data clustering
- An introduction to models based on Laguerre, Kautz and other related orthonormal functions - part II: non-linear models
- Evaluating correlation coefficients for clustering gene expression profiles of cancer
- A simpler and more accurate AUTO-HDS framework for clustering and visualization of biological data
- On the combination of relative clustering validity criteria
- Evolutionary k-means for distributed data sets
- Active learning strategies for semi-supervised DBSCAN
- Asymmetric Volterra models based on ladder-structured generalized orthonormal basis functions
Informações sobre o DOI: 10.1109/DSAA.2016.9 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas