A clustering-based obstacle segmentation approach for urban environments (2015)
- Authors:
- Autor USP: WOLF, DENIS FERNANDO - ICMC
- Unidade: ICMC
- DOI: 10.1109/LARS-SBR.2015.58
- Subjects: COMPUTAÇÃO EVOLUTIVA; SISTEMAS EMBUTIDOS; ROBÓTICA
- Language: Inglês
- Imprenta:
- Publisher: IEEE
- Publisher place: Piscataway, NJ
- Date published: 2015
- Source:
- Título: Proceedings
- Conference titles: Latin American Robotics Symposium - LARS 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
RIDEL, Daniela A e SHINZATO, Patrick Y e WOLF, Denis Fernando. A clustering-based obstacle segmentation approach for urban environments. 2015, Anais.. Piscataway, NJ: IEEE, 2015. Disponível em: https://doi.org/10.1109/LARS-SBR.2015.58. Acesso em: 27 jan. 2026. -
APA
Ridel, D. A., Shinzato, P. Y., & Wolf, D. F. (2015). A clustering-based obstacle segmentation approach for urban environments. In Proceedings. Piscataway, NJ: IEEE. doi:10.1109/LARS-SBR.2015.58 -
NLM
Ridel DA, Shinzato PY, Wolf DF. A clustering-based obstacle segmentation approach for urban environments [Internet]. Proceedings. 2015 ;[citado 2026 jan. 27 ] Available from: https://doi.org/10.1109/LARS-SBR.2015.58 -
Vancouver
Ridel DA, Shinzato PY, Wolf DF. A clustering-based obstacle segmentation approach for urban environments [Internet]. Proceedings. 2015 ;[citado 2026 jan. 27 ] Available from: https://doi.org/10.1109/LARS-SBR.2015.58 - Localization and mapping in urban environments using mobile robots
- Monitoramento de ambientes internos utilizando robôs móveis
- Automatic semantic waypoint mapping applied to autonomous vehicles
- Road detection using high resolution LIDAR
- Path recognition for outdoor navigation
- Vision-based outdoor navigation using mobile robots
- A new metric for evaluating semantic segmentation: leveraging global and contour accuracy
- Fast metric multi-object vehicle tracking for dynamical environment comprehension
- Solving the monocular visual odometry scale problem with the efficient second-order minimization method
- Feature detection for vehicle localization in urban environments using a multilayer LIDAR
Informações sobre o DOI: 10.1109/LARS-SBR.2015.58 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
