Geodesic stability for memoryless binary long-lived consensus (2015)
- Authors:
- Autor USP: FERNANDES, CRISTINA GOMES - IME
- Unidade: IME
- DOI: 10.1016/j.jcss.2015.03.002
- Subjects: OTIMIZAÇÃO COMBINATÓRIA; ANÁLISE DE ALGORITMOS; ALGORITMOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Computer and System Sciences
- ISSN: 0022-0000
- Volume/Número/Paginação/Ano: v. 81, n. 7, p. 1210–1220, 2015
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: bronze
- Licença: publisher-specific-oa
-
ABNT
FERNANDES, Cristina Gomes e STEIN, Maya. Geodesic stability for memoryless binary long-lived consensus. Journal of Computer and System Sciences, v. 81, n. 7, p. 1210–1220, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jcss.2015.03.002. Acesso em: 06 nov. 2024. -
APA
Fernandes, C. G., & Stein, M. (2015). Geodesic stability for memoryless binary long-lived consensus. Journal of Computer and System Sciences, 81( 7), 1210–1220. doi:10.1016/j.jcss.2015.03.002 -
NLM
Fernandes CG, Stein M. Geodesic stability for memoryless binary long-lived consensus [Internet]. Journal of Computer and System Sciences. 2015 ; 81( 7): 1210–1220.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/j.jcss.2015.03.002 -
Vancouver
Fernandes CG, Stein M. Geodesic stability for memoryless binary long-lived consensus [Internet]. Journal of Computer and System Sciences. 2015 ; 81( 7): 1210–1220.[citado 2024 nov. 06 ] Available from: https://doi.org/10.1016/j.jcss.2015.03.002 - Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width
- Kinetic clustering of points on the line
- Multicuts in unweighted digraphs with bounded degree and bounded tree-width
- Independent dominating sets in planar triangulations
- On Tuza’s conjecture for triangulations and graphs with small treewidth
- On edge-magic labelings of forests
- Problemas circulatorios em grafos
- A better approximation ratio for the minimum k-edge-connected spanning subgraph problem
- A new approximation algorithm for finding heavy planar subgraphs
- Approximation algorithms for the max-buying problem with limited supply
Informações sobre o DOI: 10.1016/j.jcss.2015.03.002 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas