Geodesic stability for memoryless binary long-lived consensus (2015)
- Authors:
- Autor USP: FERNANDES, CRISTINA GOMES - IME
- Unidade: IME
- DOI: 10.1016/j.jcss.2015.03.002
- Subjects: OTIMIZAÇÃO COMBINATÓRIA; ANÁLISE DE ALGORITMOS; ALGORITMOS
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Computer and System Sciences
- ISSN: 0022-0000
- Volume/Número/Paginação/Ano: v. 81, n. 7, p. 1210–1220, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
FERNANDES, Cristina Gomes e STEIN, Maya. Geodesic stability for memoryless binary long-lived consensus. Journal of Computer and System Sciences, v. 81, n. 7, p. 1210–1220, 2015Tradução . . Disponível em: https://doi.org/10.1016/j.jcss.2015.03.002. Acesso em: 21 fev. 2026. -
APA
Fernandes, C. G., & Stein, M. (2015). Geodesic stability for memoryless binary long-lived consensus. Journal of Computer and System Sciences, 81( 7), 1210–1220. doi:10.1016/j.jcss.2015.03.002 -
NLM
Fernandes CG, Stein M. Geodesic stability for memoryless binary long-lived consensus [Internet]. Journal of Computer and System Sciences. 2015 ; 81( 7): 1210–1220.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1016/j.jcss.2015.03.002 -
Vancouver
Fernandes CG, Stein M. Geodesic stability for memoryless binary long-lived consensus [Internet]. Journal of Computer and System Sciences. 2015 ; 81( 7): 1210–1220.[citado 2026 fev. 21 ] Available from: https://doi.org/10.1016/j.jcss.2015.03.002 - A systematic approach to bound factor revealing LPs and its application to the metric and squared metric facility location problems
- Improved approximation algorithms for capacitated fault-tolerant k-center
- Problemas circulatorios em grafos
- Second-price ad auctions with binary bids and markets with good competition
- A better approximation algorithm for finding planar subgraphs
- Guest Editorial: Special Issue on Latin American Theoretical Informatics Symposium (LATIN)
- A better approximation ratio for the minimum k-edge-connected spanning subgraph problem
- Approximating minimum k-section in trees with linear diameter
- Approximation algorithms for the max-buying problem with limited supply
- Trajectory clustering of points in R
Informações sobre o DOI: 10.1016/j.jcss.2015.03.002 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
