Multicuts in unweighted digraphs with bounded degree and bounded tree-width (2001)
- Authors:
- Autor USP: FERNANDES, CRISTINA GOMES - IME
- Unidade: IME
- DOI: 10.1016/S1571-0653(04)00258-6
- Assunto: ALGORITMOS DE APROXIMAÇÃO
- Keywords: directed multicut; tree-width
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Electronic Notes in Discrete Mathematics
- ISSN: 1571-0653
- Volume/Número/Paginação/Ano: v. 7, p. 194-197, 2001
- Conference titles: Brazilian Symposium on Graphs, Algorithms and Combinatorics
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
CALINESCU, Gruia e FERNANDES, Cristina Gomes. Multicuts in unweighted digraphs with bounded degree and bounded tree-width. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1016/S1571-0653(04)00258-6. Acesso em: 21 jan. 2026. , 2001 -
APA
Calinescu, G., & Fernandes, C. G. (2001). Multicuts in unweighted digraphs with bounded degree and bounded tree-width. Electronic Notes in Discrete Mathematics. Amsterdam: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1016/S1571-0653(04)00258-6 -
NLM
Calinescu G, Fernandes CG. Multicuts in unweighted digraphs with bounded degree and bounded tree-width [Internet]. Electronic Notes in Discrete Mathematics. 2001 ; 7 194-197.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/S1571-0653(04)00258-6 -
Vancouver
Calinescu G, Fernandes CG. Multicuts in unweighted digraphs with bounded degree and bounded tree-width [Internet]. Electronic Notes in Discrete Mathematics. 2001 ; 7 194-197.[citado 2026 jan. 21 ] Available from: https://doi.org/10.1016/S1571-0653(04)00258-6 - This volume contains the papers presented at LAGOS 2023, the XII Latin-American Algorithms, Graphs and Optimization Symposium. [Prefácio]
- Approximation algorithms for the max-buying problem with limited supply
- Approximating minimum k-section in trees with linear diameter
- A better approximation algorithm for finding planar subgraphs
- Hitting all longest cycles in a graph
- Trajectory clustering of points in R
- Maximum series-parallel subgraph
- Transversals of longest paths
- Improved approximation algorithms for capacitated fault-tolerant k-Center
- A new approximation algorithm for finding heavy planar subgraphs
Informações sobre o DOI: 10.1016/S1571-0653(04)00258-6 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3033863.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
