A new approximation algorithm for finding heavy planar subgraphs (2003)
- Authors:
- USP affiliated author: FERNANDES, CRISTINA GOMES - IME
- School: IME
- DOI: 10.1007/s00453-002-1020-3
- Subjects: TEORIA DOS GRAFOS; ALGORITMOS DE APROXIMAÇÃO
- Keywords: Weighted planar graph; Performance ratio
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Algorithmica
- ISSN: 0178-4617
- Volume/Número/Paginação/Ano: v. 36, n. 2, p. 179-205, 2003
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
CALINESCU, Gruia; FERNANDES, Cristina Gomes; KARLOFF, Howard; ZELIKOVSKY, Alexander. A new approximation algorithm for finding heavy planar subgraphs. Algorithmica, New York, v. 36, n. 2, p. 179-205, 2003. Disponível em: < https://doi.org/10.1007/s00453-002-1020-3 > DOI: 10.1007/s00453-002-1020-3. -
APA
Calinescu, G., Fernandes, C. G., Karloff, H., & Zelikovsky, A. (2003). A new approximation algorithm for finding heavy planar subgraphs. Algorithmica, 36( 2), 179-205. doi:10.1007/s00453-002-1020-3 -
NLM
Calinescu G, Fernandes CG, Karloff H, Zelikovsky A. A new approximation algorithm for finding heavy planar subgraphs [Internet]. Algorithmica. 2003 ; 36( 2): 179-205.Available from: https://doi.org/10.1007/s00453-002-1020-3 -
Vancouver
Calinescu G, Fernandes CG, Karloff H, Zelikovsky A. A new approximation algorithm for finding heavy planar subgraphs [Internet]. Algorithmica. 2003 ; 36( 2): 179-205.Available from: https://doi.org/10.1007/s00453-002-1020-3 - Geodesic stability for memoryless binary long-lived consensus
- Approximation algorithms for the max-buying problem with limited supply
- Problemas circulatorios em grafos
- A better approximation ratio for the minimum k-edge-connected spanning subgraph problem
- A concurrent implementation of skip graphs
- Approximation algorithms for the Max-Buying problem with limited supply
- Nonempty intersection of longest paths in series-parallel graphs
- The online multicommodity connected facility location problem
- Kinetic clustering of points on the line
- Multicuts in unweighted graphs and digraphs with bounded degree and bounded tree-width
Informações sobre o DOI: 10.1007/s00453-002-1020-3 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas