Data perturbation for outlier detection ensembles (2014)
- Authors:
- Autor USP: CAMPELLO, RICARDO JOSÉ GABRIELLI BARRETO - ICMC
- Unidade: ICMC
- DOI: 10.1145/2618243.2618257
- Assunto: INTELIGÊNCIA ARTIFICIAL
- Language: Inglês
- Imprenta:
- ISBN: 9781450327220
- Source:
- Título: Proceedings
- Conference titles: International Conference on Scientific and Statistical Database Management - SSDBM
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ZIMEK, Arthur e CAMPELLO, Ricardo José Gabrielli Barreto e SANDER, Jörg. Data perturbation for outlier detection ensembles. 2014, Anais.. New York: ACM, 2014. Disponível em: https://doi.org/10.1145/2618243.2618257. Acesso em: 23 jan. 2026. -
APA
Zimek, A., Campello, R. J. G. B., & Sander, J. (2014). Data perturbation for outlier detection ensembles. In Proceedings. New York: ACM. doi:10.1145/2618243.2618257 -
NLM
Zimek A, Campello RJGB, Sander J. Data perturbation for outlier detection ensembles [Internet]. Proceedings. 2014 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1145/2618243.2618257 -
Vancouver
Zimek A, Campello RJGB, Sander J. Data perturbation for outlier detection ensembles [Internet]. Proceedings. 2014 ;[citado 2026 jan. 23 ] Available from: https://doi.org/10.1145/2618243.2618257 - Exact search directions for optimization of linear and nonlinear models based on generalized orthonormal functions
- A cluster based hybrid feature selection approach
- A unified framework of density-based clustering for semi-supervised classification
- Active semi-supervised classification based on multiple clustering hierarchies
- Clustering of RNA-Seq samples: comparison study on cancer data
- On the internal evaluation of unsupervised outlier detection
- Takagi-Sugeno fuzzy models in the framework of orthonormal basis functions
- Automatic aspect discrimination in data clustering
- Ensembles for unsupervised outlier detection: challenges and research questions
- Proximity measures for clustering gene expression microarray data: a validation methodology and a comparative analysis
Informações sobre o DOI: 10.1145/2618243.2618257 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas