On equilibrium distribution of a reversible growth model (2012)
- Authors:
- Autor USP: IAMBARTSEV, ANATOLI - IME
- Unidade: IME
- DOI: 10.1007/s10955-012-0530-x
- Assunto: PROCESSOS ESTOCÁSTICOS ESPECIAIS
- Keywords: Markov chain; Gibbs measure; Reversibility; Percolation
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Journal of Statistical Physics
- ISSN: 0022-4715
- Volume/Número/Paginação/Ano: v. 148, n. 1, p. 148-153, 2012
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
SHCHERBAKOV, Vadim e IAMBARTSEV, Anatoli. On equilibrium distribution of a reversible growth model. Journal of Statistical Physics, v. 148, n. 1, p. 148-153, 2012Tradução . . Disponível em: https://doi.org/10.1007/s10955-012-0530-x. Acesso em: 18 fev. 2026. -
APA
Shcherbakov, V., & Iambartsev, A. (2012). On equilibrium distribution of a reversible growth model. Journal of Statistical Physics, 148( 1), 148-153. doi:10.1007/s10955-012-0530-x -
NLM
Shcherbakov V, Iambartsev A. On equilibrium distribution of a reversible growth model [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 148-153.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1007/s10955-012-0530-x -
Vancouver
Shcherbakov V, Iambartsev A. On equilibrium distribution of a reversible growth model [Internet]. Journal of Statistical Physics. 2012 ; 148( 1): 148-153.[citado 2026 fev. 18 ] Available from: https://doi.org/10.1007/s10955-012-0530-x - Differentially correlated genes in co-expression networks control phenotype transitions
- Selection of control genes for quantitative RT-PCR based on microarray data
- Bounds on the critical line via transfer matrix methods for an Ising model coupled to causal dynamical triangulations
- Gene network reconstruction reveals cell cycle and antiviral genes as major drivers of cervical cancer
- Unexpected links reflect the noise in networks
- Stochastic ising model with plastic interactions
- Lack of phase transitions in staggered magnetic systems. A comparison of uniqueness criteria
- Phase transition for the Ising model on the critical Lorentzian triangulation
- A Mermin–Wagner theorem on Lorentzian triangulations with quantum spins
- Growth of uniform infinite causal triangulations
Informações sobre o DOI: 10.1007/s10955-012-0530-x (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas