Filtros : "Financiamento FAPESP" "ATRATORES" Limpar

Filtros



Limitar por data


  • Fonte: Communications in Nonlinear Science and Numerical Simulation. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, SISTEMAS DISSIPATIVO

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares e LÓPEZ-LÁZARO, Heraclio e TAKAESSU JUNIOR, Carlos Roberto. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, v. 152, n. Ja 2026, p. 1-12, 2026Tradução . . Disponível em: https://doi.org/10.1016/j.cnsns.2025.109198. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., López-Lázaro, H., & Takaessu Junior, C. R. (2026). Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations. Communications in Nonlinear Science and Numerical Simulation, 152( Ja 2026), 1-12. doi:10.1016/j.cnsns.2025.109198
    • NLM

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
    • Vancouver

      Azevedo VT, López-Lázaro H, Takaessu Junior CR. Existence and continuity of pullback exponential attractors for a family of non-classical reaction-diffusion equations [Internet]. Communications in Nonlinear Science and Numerical Simulation. 2026 ; 152( Ja 2026): 1-12.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.cnsns.2025.109198
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS QUASE LINEARES, SISTEMAS QUASE LINEARES, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e SIMSEN, Jacson e SIMSEN, Mariza Stefanello. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, v. 547, n. 1, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129284. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Simsen, J., & Simsen, M. S. (2025). Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness. Journal of Mathematical Analysis and Applications, 547( 1), 1-30. doi:10.1016/j.jmaa.2025.129284
    • NLM

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
    • Vancouver

      Carvalho AN de, Simsen J, Simsen MS. Attractors for parabolic problems with p(x)-Laplacian: bounds, continuity of the flow and robustness [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 1): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129284
  • Fonte: Journal of Evolution Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, v. 25, n. 1, p. 1-29, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00028-024-01039-5. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Carvalho, A. N. de, Marín-Rubio, P., & Valero, J. (2025). Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations. Journal of Evolution Equations, 25( 1), 1-29. doi:10.1007/s00028-024-01039-5
    • NLM

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
    • Vancouver

      Bortolan MC, Carvalho AN de, Marín-Rubio P, Valero J. Weak global attractor for the 3D-Navier-Stokes equations via the globally modified Navier-Stokes equations [Internet]. Journal of Evolution Equations. 2025 ; 25( 1): 1-29.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00028-024-01039-5
  • Fonte: Differential Equations and Dynamical Systems. Unidade: ICMC

    Assuntos: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, ATRATORES

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PACÍFICO, Tiago A. Sections and parallelizable semigroups. Differential Equations and Dynamical Systems, 2025Tradução . . Disponível em: https://doi.org/10.1007/s12591-025-00734-0. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pacífico, T. A. (2025). Sections and parallelizable semigroups. Differential Equations and Dynamical Systems. doi:10.1007/s12591-025-00734-0
    • NLM

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
    • Vancouver

      Bonotto E de M, Bortolan MC, Pacífico TA. Sections and parallelizable semigroups [Internet]. Differential Equations and Dynamical Systems. 2025 ;[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s12591-025-00734-0
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES IMPULSIVAS, SISTEMAS DINÂMICOS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e UZAL, José Manuel. Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, v. 37, p. 241–2265, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10356-9. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., & Uzal, J. M. (2025). Global attractors for a class of discrete dynamical systems. Journal of Dynamics and Differential Equations, 37, 241–2265. doi:10.1007/s10884-024-10356-9
    • NLM

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
    • Vancouver

      Bonotto E de M, Uzal JM. Global attractors for a class of discrete dynamical systems [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37 241–2265.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10356-9
  • Fonte: Abstracts. Nome do evento: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, ESPAÇOS DE HILBERT, ATRATORES

    PrivadoAcesso à fonteComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKAESSU JUNIOR, Carlos Roberto e CARVALHO, Alexandre Nolasco de e ARRIETA, José María. Shadowing properties on Hilbert spaces. 2025, Anais.. São Carlos: ICMC-USP, 2025. Disponível em: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php. Acesso em: 08 out. 2025.
    • APA

      Takaessu Junior, C. R., Carvalho, A. N. de, & Arrieta, J. M. (2025). Shadowing properties on Hilbert spaces. In Abstracts. São Carlos: ICMC-USP. Recuperado de https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
    • NLM

      Takaessu Junior CR, Carvalho AN de, Arrieta JM. Shadowing properties on Hilbert spaces [Internet]. Abstracts. 2025 ;[citado 2025 out. 08 ] Available from: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
    • Vancouver

      Takaessu Junior CR, Carvalho AN de, Arrieta JM. Shadowing properties on Hilbert spaces [Internet]. Abstracts. 2025 ;[citado 2025 out. 08 ] Available from: https://summer.icmc.usp.br/summers/summer25/pg_abstract.php
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS, ATRATORES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, v. 37, n. 3, p. 2565-2600, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-024-10378-3. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Caraballo, T., Nascimento, M. J. D., & Schiabel, K. (2025). Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator. Journal of Dynamics and Differential Equations, 37( 3), 2565-2600. doi:10.1007/s10884-024-10378-3
    • NLM

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
    • Vancouver

      Belluzi M, Caraballo T, Nascimento MJD, Schiabel K. Long-time behavior for semilinear equation with time-dependent and almost sectorial linear operator [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( 3): 2565-2600.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-024-10378-3
  • Fonte: Journal of Mathematical Biology. Unidade: ICMC

    Assuntos: ESTABILIDADE DE SISTEMAS, ATRATORES, MÉTODOS NUMÉRICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, v. 90, n. 3, p. 1-31, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00285-025-02190-4. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Kalita, P., Langa, J. A., & Moura, R. de O. (2025). A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems. Journal of Mathematical Biology, 90( 3), 1-31. doi:10.1007/s00285-025-02190-4
    • NLM

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
    • Vancouver

      Bortolan MC, Kalita P, Langa JA, Moura R de O. A theoretical and computational study of heteroclinic cycles in Lotka-Volterra systems [Internet]. Journal of Mathematical Biology. 2025 ; 90( 3): 1-31.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00285-025-02190-4
  • Fonte: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HUACCHA-NEYRA, Jackeline et al. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, v. 547, n. 2, p. 1-30, 2025Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2025.129332. Acesso em: 08 out. 2025.
    • APA

      Huaccha-Neyra, J., López-Lázaro, H., Rubio, O., & Takaessu Junior, C. R. (2025). Pullback exponential attractor of dynamical systems associated with non-cylindrical problems. Journal of Mathematical Analysis and Applications, 547( 2), 1-30. doi:10.1016/j.jmaa.2025.129332
    • NLM

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
    • Vancouver

      Huaccha-Neyra J, López-Lázaro H, Rubio O, Takaessu Junior CR. Pullback exponential attractor of dynamical systems associated with non-cylindrical problems [Internet]. Journal of Mathematical Analysis and Applications. 2025 ; 547( 2): 1-30.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jmaa.2025.129332
  • Fonte: Journal of Dynamics and Differential Equations. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS, OPERADORES NÃO LINEARES

    Versão AceitaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELLUZI, Maykel et al. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, v. 37, n. Ju 2025, p. 1917-1932, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10884-023-10341-8. Acesso em: 08 out. 2025.
    • APA

      Belluzi, M., Bortolan, M. C., Castro, U., & Fernandes, J. (2025). Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation. Journal of Dynamics and Differential Equations, 37( Ju 2025), 1917-1932. doi:10.1007/s10884-023-10341-8
    • NLM

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
    • Vancouver

      Belluzi M, Bortolan MC, Castro U, Fernandes J. Continuity of the unbounded attractors for a fractional perturbation of a scalar reaction-diffusion equation [Internet]. Journal of Dynamics and Differential Equations. 2025 ; 37( Ju 2025): 1917-1932.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s10884-023-10341-8
  • Fonte: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assuntos: ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, v. 65, n. 2, p. 623-651, 2025Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2024.051. Acesso em: 08 out. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory. Topological Methods in Nonlinear Analysis, 65( 2), 623-651. doi:10.12775/TMNA.2024.051
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2024.051
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. Existence, regularity and asymptotic behavior of solutions for a nonlocal Chafee-Infante problem via semigroup theory [Internet]. Topological Methods in Nonlinear Analysis. 2025 ; 65( 2): 623-651.[citado 2025 out. 08 ] Available from: https://doi.org/10.12775/TMNA.2024.051
  • Fonte: Journal of Nonlinear Science. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, ATRATORES, EQUAÇÕES DE NAVIER-STOKES, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LANGA, José Antonio e MOURA, Rafael de Oliveira. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space. Journal of Nonlinear Science, v. 35, n. 4, p. 1-35, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00332-025-10169-0. Acesso em: 08 out. 2025.
    • APA

      Carvalho, A. N. de, Langa, J. A., & Moura, R. de O. (2025). Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space. Journal of Nonlinear Science, 35( 4), 1-35. doi:10.1007/s00332-025-10169-0
    • NLM

      Carvalho AN de, Langa JA, Moura R de O. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space [Internet]. Journal of Nonlinear Science. 2025 ; 35( 4): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00332-025-10169-0
    • Vancouver

      Carvalho AN de, Langa JA, Moura R de O. Finite fractal dimension of uniform attractors for non-autonomous dynamical systems with infinite-dimensional symbol space [Internet]. Journal of Nonlinear Science. 2025 ; 35( 4): 1-35.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00332-025-10169-0
  • Unidade: ICMC

    Assuntos: DIMENSÃO INFINITA, ATRATORES, SEMIGRUPOS NÃO LINEARES, SISTEMAS DINÂMICOS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      TAKAESSU JUNIOR, Carlos Roberto. Shadowing and hyperbolicity for infinite dimensional dynamical systems. 2025. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/. Acesso em: 08 out. 2025.
    • APA

      Takaessu Junior, C. R. (2025). Shadowing and hyperbolicity for infinite dimensional dynamical systems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • NLM

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2025 out. 08 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
    • Vancouver

      Takaessu Junior CR. Shadowing and hyperbolicity for infinite dimensional dynamical systems [Internet]. 2025 ;[citado 2025 out. 08 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-22072025-103719/
  • Unidade: ICMC

    Assuntos: SISTEMAS DINÂMICOS, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, FRACTAIS

    Acesso à fonteAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MOURA, Rafael de Oliveira. Dimension of attractors associated to autonomous and non-autonomous dynamical systems. 2025. Tese (Doutorado) – Universidade de São Paulo, São Carlos, 2025. Disponível em: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/. Acesso em: 08 out. 2025.
    • APA

      Moura, R. de O. (2025). Dimension of attractors associated to autonomous and non-autonomous dynamical systems (Tese (Doutorado). Universidade de São Paulo, São Carlos. Recuperado de https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
    • NLM

      Moura R de O. Dimension of attractors associated to autonomous and non-autonomous dynamical systems [Internet]. 2025 ;[citado 2025 out. 08 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
    • Vancouver

      Moura R de O. Dimension of attractors associated to autonomous and non-autonomous dynamical systems [Internet]. 2025 ;[citado 2025 out. 08 ] Available from: https://www.teses.usp.br/teses/disponiveis/55/55135/tde-29072025-144623/
  • Fonte: Applied Mathematics and Optimization. Unidade: ICMC

    Assuntos: EQUAÇÕES DE NAVIER-STOKES, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS, MECÂNICA DOS FLUÍDOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARABALLO, Tomás e CARVALHO, Alexandre Nolasco de e JULIO PÉREZ, Yessica Yuliet. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, v. 91, n. 2, p. 1-18, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00245-025-10241-x. Acesso em: 08 out. 2025.
    • APA

      Caraballo, T., Carvalho, A. N. de, & Julio Pérez, Y. Y. (2025). A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory. Applied Mathematics and Optimization, 91( 2), 1-18. doi:10.1007/s00245-025-10241-x
    • NLM

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
    • Vancouver

      Caraballo T, Carvalho AN de, Julio Pérez YY. A delay nonlocal quasilinear Chafee-Infante problem: an approach via semigroup theory [Internet]. Applied Mathematics and Optimization. 2025 ; 91( 2): 1-18.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-025-10241-x
  • Fonte: Mathematical Methods in the Applied Sciences. Unidade: ICMC

    Assuntos: ATRATORES, PROBLEMAS DE CONTORNO, EQUAÇÕES DIFERENCIAIS PARCIAIS HIPERBÓLICAS, SISTEMAS DINÂMICOS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus Cheque et al. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, v. 48, n. 14, p. 13456-13474, 2025Tradução . . Disponível em: https://doi.org/10.1002/mma.11115. Acesso em: 08 out. 2025.
    • APA

      Bortolan, M. C., Pecorari Neto, C., López-Lázaro, H., & Seminario-Huertas, P. N. (2025). Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity. Mathematical Methods in the Applied Sciences, 48( 14), 13456-13474. doi:10.1002/mma.11115
    • NLM

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
    • Vancouver

      Bortolan MC, Pecorari Neto C, López-Lázaro H, Seminario-Huertas PN. Generalized 𝝋-pullback attractors in time-dependent spaces: application to a nonautonomous wave equation with time-dependent propagation velocity [Internet]. Mathematical Methods in the Applied Sciences. 2025 ; 48( 14): 13456-13474.[citado 2025 out. 08 ] Available from: https://doi.org/10.1002/mma.11115
  • Fonte: Mathematische Annalen. Unidade: ICMC

    Assuntos: ATRATORES, ONDAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Vinícius Tavares et al. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order. Mathematische Annalen, v. 392, p. 5639–5688, 2025Tradução . . Disponível em: https://doi.org/10.1007/s00208-025-03264-w. Acesso em: 08 out. 2025.
    • APA

      Azevedo, V. T., Bonotto, E. de M., Cunha, A. C., & Nascimento, M. J. D. (2025). Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order. Mathematische Annalen, 392, 5639–5688. doi:10.1007/s00208-025-03264-w
    • NLM

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Mathematische Annalen. 2025 ; 392 5639–5688.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-025-03264-w
    • Vancouver

      Azevedo VT, Bonotto E de M, Cunha AC, Nascimento MJD. Existence, regularization and upper-semicontinuity of uniform attractors for a nonautonomous semilinear evolution equation of second order [Internet]. Mathematische Annalen. 2025 ; 392 5639–5688.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00208-025-03264-w
  • Fonte: Applied Mathematics and Optimization. Unidade: ICMC

    Assuntos: ATRATORES, TOPOLOGIA DINÂMICA, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello et al. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, v. 90, p. 1-47, 2024Tradução . . Disponível em: https://doi.org/10.1007/s00245-024-10170-1. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Carvalho, A. N. de, Nascimento, M. J. D., & Santiago, E. B. (2024). Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations. Applied Mathematics and Optimization, 90, 1-47. doi:10.1007/s00245-024-10170-1
    • NLM

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
    • Vancouver

      Bonotto E de M, Carvalho AN de, Nascimento MJD, Santiago EB. Lower semicontinuity of pullback attractors for a non-autonomous coupled system of strongly damped wave equations [Internet]. Applied Mathematics and Optimization. 2024 ; 90 1-47.[citado 2025 out. 08 ] Available from: https://doi.org/10.1007/s00245-024-10170-1
  • Fonte: Matemática Contemporânea. Nome do evento: ICMC Summer Meeting on Differential Equations. Unidade: ICMC

    Assuntos: EQUAÇÕES DIFERENCIAIS COM RETARDAMENTO, ATRATORES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Versão PublicadaAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARVALHO, Alexandre Nolasco de e LÓPEZ-LÁZARO, Heraclio e HUACCHA-NEYRA, Jackeline. Smoothing property of an evolution process associated with semilinear heat equation with delay on an interval with moving ends. Matemática Contemporânea. Rio de Janeiro: SBM. Disponível em: http://doi.org/10.21711/231766362024/rmc618. Acesso em: 08 out. 2025. , 2024
    • APA

      Carvalho, A. N. de, López-Lázaro, H., & Huaccha-Neyra, J. (2024). Smoothing property of an evolution process associated with semilinear heat equation with delay on an interval with moving ends. Matemática Contemporânea. Rio de Janeiro: SBM. doi:10.21711/231766362024/rmc618
    • NLM

      Carvalho AN de, López-Lázaro H, Huaccha-Neyra J. Smoothing property of an evolution process associated with semilinear heat equation with delay on an interval with moving ends [Internet]. Matemática Contemporânea. 2024 ; 61 143-162.[citado 2025 out. 08 ] Available from: http://doi.org/10.21711/231766362024/rmc618
    • Vancouver

      Carvalho AN de, López-Lázaro H, Huaccha-Neyra J. Smoothing property of an evolution process associated with semilinear heat equation with delay on an interval with moving ends [Internet]. Matemática Contemporânea. 2024 ; 61 143-162.[citado 2025 out. 08 ] Available from: http://doi.org/10.21711/231766362024/rmc618
  • Fonte: Journal of Differential Equations. Unidade: ICMC

    Assuntos: SEMIGRUPOS NÃO LINEARES, EQUAÇÕES DE EVOLUÇÃO, ATRATORES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e BORTOLAN, Matheus Cheque e PEREIRA, Fabiano. Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, v. 384, p. 279-325, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jde.2023.12.008. Acesso em: 08 out. 2025.
    • APA

      Bonotto, E. de M., Bortolan, M. C., & Pereira, F. (2024). Lyapunov functions for dynamically gradient impulsive systems. Journal of Differential Equations, 384, 279-325. doi:10.1016/j.jde.2023.12.008
    • NLM

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008
    • Vancouver

      Bonotto E de M, Bortolan MC, Pereira F. Lyapunov functions for dynamically gradient impulsive systems [Internet]. Journal of Differential Equations. 2024 ; 384 279-325.[citado 2025 out. 08 ] Available from: https://doi.org/10.1016/j.jde.2023.12.008

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025