Filtros : "Linear Algebra and its Applications" "Financiado pelo CNPq" Limpar

Filtros



Refine with date range


  • Source: Linear Algebra and its Applications. Conference titles: Linear Algebra without Borders - ILAS Conference. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. Disponível em: https://doi.org/10.1016/j.laa.2020.12.009. Acesso em: 05 dez. 2025. , 2021
    • APA

      Futorny, V., Klymchuk, T., Klymenko, O., Sergeichuk, V. V., & Shvai, N. (2021). Perturbation theory of matrix pencils through miniversal deformations. Linear Algebra and its Applications. New York: Elsevier. doi:10.1016/j.laa.2020.12.009
    • NLM

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
    • Vancouver

      Futorny V, Klymchuk T, Klymenko O, Sergeichuk VV, Shvai N. Perturbation theory of matrix pencils through miniversal deformations [Internet]. Linear Algebra and its Applications. 2021 ; 614 455-499.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.12.009
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONDARENKO, Vitalij M. et al. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, v. 612, p. 188-205, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.10.040. Acesso em: 05 dez. 2025.
    • APA

      Bondarenko, V. M., Futorny, V., Petravchuk, A. P., & Sergeichuk, V. V. (2021). Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix. Linear Algebra and its Applications, 612, 188-205. doi:10.1016/j.laa.2020.10.040
    • NLM

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
    • Vancouver

      Bondarenko VM, Futorny V, Petravchuk AP, Sergeichuk VV. Pairs of commuting nilpotent operators with one-dimensional intersection of kernels and matrices commuting with a Weyr matrix [Internet]. Linear Algebra and its Applications. 2021 ; 612 188-205.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.10.040
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ÁLGEBRA MULTILINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 05 dez. 2025.
    • APA

      Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018
    • NLM

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
    • Vancouver

      Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, FORMAS QUADRÁTICAS, ESPAÇOS COM PRODUTO INTERNO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAALIM, Jonathan V. et al. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, v. 587, p. 92-110, 2020Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2019.11.004. Acesso em: 05 dez. 2025.
    • APA

      Caalim, J. V., Futorny, V., Sergeichuk, V. V., & Tanaka, Y. -ichi. (2020). Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form. Linear Algebra and its Applications, 587, 92-110. doi:10.1016/j.laa.2019.11.004
    • NLM

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
    • Vancouver

      Caalim JV, Futorny V, Sergeichuk VV, Tanaka Y-ichi. Isometric and selfadjoint operators on a vector space with nondegenerate diagonalizable form [Internet]. Linear Algebra and its Applications. 2020 ; 587 92-110.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2019.11.004
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, GRUPOS QUÂNTICOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e HARTWIG, Jonas T. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN. Linear Algebra and its Applications, v. 568, p. 173-188, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.08.011. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., & Hartwig, J. T. (2019). De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN. Linear Algebra and its Applications, 568, 173-188. doi:10.1016/j.laa.2018.08.011
    • NLM

      Futorny V, Hartwig JT. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.08.011
    • Vancouver

      Futorny V, Hartwig JT. De Concini-Kac filtration and Gelfand-Tsetlin generators for quantum glN [Internet]. Linear Algebra and its Applications. 2019 ; 568 173-188.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.08.011
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: FORMAS QUADRÁTICAS, TEORIA DOS ANÉIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Claudia Cavalcante e IUSENKO, Kostiantyn. On dimension of poset variety. Linear Algebra and its Applications, v. 568, n. 1, p. 155-164, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.06.019. Acesso em: 05 dez. 2025.
    • APA

      Fonseca, C. C., & Iusenko, K. (2019). On dimension of poset variety. Linear Algebra and its Applications, 568( 1), 155-164. doi:10.1016/j.laa.2018.06.019
    • NLM

      Fonseca CC, Iusenko K. On dimension of poset variety [Internet]. Linear Algebra and its Applications. 2019 ; 568( 1): 155-164.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.06.019
    • Vancouver

      Fonseca CC, Iusenko K. On dimension of poset variety [Internet]. Linear Algebra and its Applications. 2019 ; 568( 1): 155-164.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.06.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, TENSORES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e GROCHOW, Joshua A. e SERGEICHUK, Vladimir V. Wildness for tensors. Linear Algebra and its Applications, v. 566, p. 212-244, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.12.022. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Grochow, J. A., & Sergeichuk, V. V. (2019). Wildness for tensors. Linear Algebra and its Applications, 566, 212-244. doi:10.1016/j.laa.2018.12.022
    • NLM

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
    • Vancouver

      Futorny V, Grochow JA, Sergeichuk VV. Wildness for tensors [Internet]. Linear Algebra and its Applications. 2019 ; 566 212-244.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.12.022
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: LAÇOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e PEREZ-IZQUIERDO, José Maria. Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, v. 544, p. 460-501, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2018.01.028. Acesso em: 05 dez. 2025.
    • APA

      Grichkov, A., & Perez-Izquierdo, J. M. (2018). Lie's correspondence for commutative automorphic formal loops. Linear Algebra and its Applications, 544, 460-501. doi:10.1016/j.laa.2018.01.028
    • NLM

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
    • Vancouver

      Grichkov A, Perez-Izquierdo JM. Lie's correspondence for commutative automorphic formal loops [Internet]. Linear Algebra and its Applications. 2018 ; 544 460-501.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2018.01.028
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav et al. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, v. 536, p. 201-209, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2017.09.019. Acesso em: 05 dez. 2025.
    • APA

      Futorny, V., Klymchuk, T., Petravchuk, A. P., & Sergeichuk, V. V. (2018). Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras. Linear Algebra and its Applications, 536, 201-209. doi:10.1016/j.laa.2017.09.019
    • NLM

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
    • Vancouver

      Futorny V, Klymchuk T, Petravchuk AP, Sergeichuk VV. Wildness of the problems of classifying two-dimensional spaces of commuting linear operators and certain Lie algebras [Internet]. Linear Algebra and its Applications. 2018 ; 536 201-209.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2017.09.019
  • Source: Linear Algebra and its Applications. Unidade: IME

    Subjects: ÁLGEBRA LINEAR, ÁLGEBRA MULTILINEAR, SISTEMAS DINÂMICOS, TEORIA ERGÓDICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FONSECA, Carlos M. et al. Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, v. 515, n. , p. 1-5, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2016.11.012. Acesso em: 05 dez. 2025.
    • APA

      Fonseca, C. M., Futorny, V., Rybalkina, T., & Sergeichuk, V. V. (2017). Topological classification of systems of bilinear and sesquilinear forms. Linear Algebra and its Applications, 515( ), 1-5. doi:10.1016/j.laa.2016.11.012
    • NLM

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012
    • Vancouver

      Fonseca CM, Futorny V, Rybalkina T, Sergeichuk VV. Topological classification of systems of bilinear and sesquilinear forms [Internet]. Linear Algebra and its Applications. 2017 ; 515( ): 1-5.[citado 2025 dez. 05 ] Available from: https://doi.org/10.1016/j.laa.2016.11.012

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025