Congruence of matrix spaces, matrix tuples, and multilinear maps (2021)
- Authors:
- Autor USP: FUTORNY, VYACHESLAV - IME
- Unidade: IME
- DOI: 10.1016/j.laa.2020.09.018
- Subjects: ÁLGEBRA LINEAR; FORMAS QUADRÁTICAS; ÁLGEBRA MULTILINEAR
- Keywords: Congruence; Weak congruence; Multilinear maps
- Agências de fomento:
- Language: Inglês
- Imprenta:
- Source:
- Título: Linear Algebra and its Applications
- ISSN: 0024-3795
- Volume/Número/Paginação/Ano: v. 609, p. 317-331, 2021
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
BELITSKII, Genrich R. et al. Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, v. 609, p. 317-331, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2020.09.018. Acesso em: 25 jan. 2026. -
APA
Belitskii, G. R., Futorny, V., Muzychuk, M., & Sergeichuk, V. V. (2021). Congruence of matrix spaces, matrix tuples, and multilinear maps. Linear Algebra and its Applications, 609, 317-331. doi:10.1016/j.laa.2020.09.018 -
NLM
Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018 -
Vancouver
Belitskii GR, Futorny V, Muzychuk M, Sergeichuk VV. Congruence of matrix spaces, matrix tuples, and multilinear maps [Internet]. Linear Algebra and its Applications. 2021 ; 609 317-331.[citado 2026 jan. 25 ] Available from: https://doi.org/10.1016/j.laa.2020.09.018 - Weight modules of quantum Weyl algebras
- Miniversal deformations of matrices of bilinear forms
- Integrable modules for affine Lie superalgebras
- Change of the *congruence canonical form of 2-by-2 matrices under perturbations
- A reduction theorem for highest weight modules over toroidal Lie algebras
- Classification of irreducible representations of Lie algebra of vector fields on a torus
- Derived tame local and two-point algebras
- Construction of Gelfand-Tsetlin modules of gl(n)
- Submodule lattice of generalized Verma modules
- A criterion for unitary similarity of upper triangular matrices in general position
Informações sobre o DOI: 10.1016/j.laa.2020.09.018 (Fonte: oaDOI API)
Download do texto completo
| Tipo | Nome | Link | |
|---|---|---|---|
| 3008217.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
