Filtros : "Journal of Chemical Information and Modeling" "2021" Limpar

Filtros



Limitar por data


  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQ

    Assuntos: ELÉTRONS, PEPTÍDEOS, PROTEÍNAS

    Acesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CAMILO, Sofia Rodrigues Guedes et al. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1. Journal of Chemical Information and Modeling, v. 61, p. 1840−1849, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00008. Acesso em: 09 nov. 2025.
    • APA

      Camilo, S. R. G., Curtolo, F., Galassi, V. V., & Arantes, G. M. (2021). Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1. Journal of Chemical Information and Modeling, 61, 1840−1849. doi:10.1021/acs.jcim.1c00008
    • NLM

      Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1840−1849.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00008
    • Vancouver

      Camilo SRG, Curtolo F, Galassi VV, Arantes GM. Tunneling and nonadiabatic effects on a proton-coupled electron transfer model for the Qo site in cytochrome bc1 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1840−1849.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00008
  • Fonte: Journal of Chemical Information and Modeling. Unidades: FCFRP, Interunidades em Bioinformática

    Assuntos: ZIKA VÍRUS, VIRULÊNCIA, FLAVIVIRUS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POVEDA CUEVAS, Sergio Alejandro e SILVA, Fernando Luís Barroso da e ETCHEBEST, Catherine. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, v. 61, n. 3, p. 1516-1530, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01377. Acesso em: 09 nov. 2025.
    • APA

      Poveda Cuevas, S. A., Silva, F. L. B. da, & Etchebest, C. (2021). How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence. Journal of Chemical Information and Modeling, 61( 3), 1516-1530. doi:10.1021/acs.jcim.0c01377
    • NLM

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
    • Vancouver

      Poveda Cuevas SA, Silva FLB da, Etchebest C. How the strain origin of Zika Virus NS1 protein impacts its dynamics and implications to their differential virulence [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 3): 1516-1530.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.0c01377
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQ, IFSC

    Assuntos: CRISTALOGRAFIA, PEPTÍDEOS, PROTEÍNAS, LIGANTES

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      VELDMAN, Wayde et al. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, v. 61, n. 9, p. 4554-4570, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00413. Acesso em: 09 nov. 2025.
    • APA

      Veldman, W., Liberato, M. V., Souza, V. P., Almeida, V. M., Marana, S. R., Bishop, O. T., & Polikarpov, I. (2021). Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis. Journal of Chemical Information and Modeling, 61( 9), 4554-4570. doi:10.1021/acs.jcim.1c00413
    • NLM

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
    • Vancouver

      Veldman W, Liberato MV, Souza VP, Almeida VM, Marana SR, Bishop OT, Polikarpov I. Differences in gluco and galacto substrate-binding interactions in a dual 6Pβ-Glucosidase/6Pβ-Galactosidase glycoside hydrolase 1 enzyme from Bacillus licheniformis [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4554-4570.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00413
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: PLANEJAMENTO DE FÁRMACOS, COMPUTAÇÃO APLICADA, INTELIGÊNCIA ARTIFICIAL

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATRA, Kushal et al. Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2641-2647, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00166. Acesso em: 09 nov. 2025.
    • APA

      Batra, K., Zorn, K. M., Foil, D. H., Minerali, E., Gawriljuk, V. O., Lane, T. R., & Ekins, S. (2021). Quantum machine learning algorithms for drug discovery applications. Journal of Chemical Information and Modeling, 61( 6), 2641-2647. doi:10.1021/acs.jcim.1c00166
    • NLM

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
    • Vancouver

      Batra K, Zorn KM, Foil DH, Minerali E, Gawriljuk VO, Lane TR, Ekins S. Quantum machine learning algorithms for drug discovery applications [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2641-2647.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00166
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: METAIS, ADSORÇÃO, FÍSICO-QUÍMICA

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BATISTA, Krys E. A. et al. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, v. 61, n. 5, p. 2294–2301, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00097. Acesso em: 09 nov. 2025.
    • APA

      Batista, K. E. A., Soares, M. D., Quiles, M. G., Piotrowski, M. J., & Da Silva, J. L. F. (2021). Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters. Journal of Chemical Information and Modeling, 61( 5), 2294–2301. doi:10.1021/acs.jcim.1c00097
    • NLM

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
    • Vancouver

      Batista KEA, Soares MD, Quiles MG, Piotrowski MJ, Da Silva JLF. Energy Decomposition to Access the Stability Changes Induced by CO Adsorption on Transition-Metal 13-Atom Clusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 5): 2294–2301.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00097
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, MINERAÇÃO DE DADOS, FRAMEWORKS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MUCELINI, Johnatan et al. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, v. 61, p. 1125-1135, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.0c01267. Acesso em: 09 nov. 2025.
    • APA

      Mucelini, J., Quiles, M. G., Prati, R. C., & Silva, J. L. F. da. (2021). Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters. Journal of Chemical Information and Modeling, 61, 1125-1135. doi:10.1021/acs.jcim.0c01267
    • NLM

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
    • Vancouver

      Mucelini J, Quiles MG, Prati RC, Silva JLF da. Correlation-based framework for extraction of insights from quantum chemistry databases: Applications for nanoclusters [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 1125-1135.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.0c01267
  • Fonte: Journal of Chemical Information and Modeling. Unidades: IQSC, IFSC

    Assunto: METAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MORAIS, Felipe Orlando e ANDRIANI, Karla Furtado e SILVA, Juarez Lopes Ferreira da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, v. 61, n. 7, p. 3411-3420, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00253. Acesso em: 09 nov. 2025.
    • APA

      Morais, F. O., Andriani, K. F., & Silva, J. L. F. da. (2021). Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm. Journal of Chemical Information and Modeling, 61( 7), 3411-3420. doi:10.1021/acs.jcim.1c00253
    • NLM

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
    • Vancouver

      Morais FO, Andriani KF, Silva JLF da. Investigation of the stability mechanisms of eight-atom binary metal clusters using DFT calculations and k‑means clustering algorithm [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 7): 3411-3420.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00253
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: QUÍMICA QUÂNTICA, ALGORITMOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      AZEVEDO, Luis Cesar de et al. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, v. 61, p. 4210−4223, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00503. Acesso em: 09 nov. 2025.
    • APA

      Azevedo, L. C. de, Pinheiro, G. A., Quiles, M. G., Silva, J. L. F. da, & Prati, R. C. (2021). Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition. Journal of Chemical Information and Modeling, 61, 4210−4223. doi:10.1021/acs.jcim.1c00503
    • NLM

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
    • Vancouver

      Azevedo LC de, Pinheiro GA, Quiles MG, Silva JLF da, Prati RC. Systematic Investigation of Error Distribution in Machine Learning Algorithms Applied to the Quantum-Chemistry QM9 Data Set Using the Bias and Variance Decomposition [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4210−4223.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00503
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: FEBRE AMARELA, APRENDIZADO COMPUTACIONAL, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Victor Gawriljuk Ferraro et al. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, v. 61, n. 8, p. 3804-3813, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00460. Acesso em: 09 nov. 2025.
    • APA

      Oliveira, V. G. F., Foil, D. H., Puhl, A. C., Zorn, K. M., Lane, T. R., Riabova, O., et al. (2021). Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus. Journal of Chemical Information and Modeling, 61( 8), 3804-3813. doi:10.1021/acs.jcim.1c00460
    • NLM

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
    • Vancouver

      Oliveira VGF, Foil DH, Puhl AC, Zorn KM, Lane TR, Riabova O, Makarov V, Godoy AS de, Oliva G, Ekins S. Development of machine learning models and the discovery of a new antiviral compound against yellow fever virus [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 8): 3804-3813.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00460
  • Fonte: Journal of Chemical Information and Modeling. Unidade: FCFRP

    Assuntos: PRODUTOS NATURAIS, METABÓLITOS SECUNDÁRIOS, FÁRMACOS, BANCO DE DADOS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      COSTA, Renan P. O. et al. The SistematX web portal of natural products: an update. Journal of Chemical Information and Modeling, v. 61, n. 6, p. 2516-2522, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00083. Acesso em: 09 nov. 2025.
    • APA

      Costa, R. P. O., Lucena, L. F., Silva, L. M. A., Zocolo, G. J., Herrera-Acevedo, C., Scotti, L., et al. (2021). The SistematX web portal of natural products: an update. Journal of Chemical Information and Modeling, 61( 6), 2516-2522. doi:10.1021/acs.jcim.1c00083
    • NLM

      Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Costa FB da, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX web portal of natural products: an update [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2516-2522.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00083
    • Vancouver

      Costa RPO, Lucena LF, Silva LMA, Zocolo GJ, Herrera-Acevedo C, Scotti L, Costa FB da, Ionov N, Poroikov V, Muratov EN, Scotti MT. The SistematX web portal of natural products: an update [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 6): 2516-2522.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00083
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IQSC

    Assuntos: MEDICAMENTO, ENZIMAS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONATTO, Vinícius et al. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, v. 61, p. 4733−4744, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00515. Acesso em: 09 nov. 2025.
    • APA

      Bonatto, V., Shamim, A., Rocho, F. dos R., Leitão, A., Luque, F. J., & Montanari, C. A. (2021). Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations. Journal of Chemical Information and Modeling, 61, 4733−4744. doi:10.1021/acs.jcim.1c00515
    • NLM

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515
    • Vancouver

      Bonatto V, Shamim A, Rocho F dos R, Leitão A, Luque FJ, Montanari CA. Predicting the Relative Binding Affinity for Reversible Covalent Inhibitors by Free Energy Perturbation Calculations [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61 4733−4744.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00515
  • Fonte: Journal of Chemical Information and Modeling. Unidade: IFSC

    Assuntos: CORONAVIRUS, COVID-19, APRENDIZADO COMPUTACIONAL, PLANEJAMENTO DE FÁRMACOS, ANTIVIRAIS

    PrivadoAcesso à fonteDOIComo citar
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Victor Gawriljuk Ferraro et al. Machine learning models identify inhibitors of SARS-CoV2. Journal of Chemical Information and Modeling, v. 61, n. 9, p. 4224-4235, 2021Tradução . . Disponível em: https://doi.org/10.1021/acs.jcim.1c00683. Acesso em: 09 nov. 2025.
    • APA

      Oliveira, V. G. F., Zin, P. P. K., Puhl, A. C., Zorn, K. M., Foil, D. H., Lane, T. R., et al. (2021). Machine learning models identify inhibitors of SARS-CoV2. Journal of Chemical Information and Modeling, 61( 9), 4224-4235. doi:10.1021/acs.jcim.1c00683
    • NLM

      Oliveira VGF, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS de, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine learning models identify inhibitors of SARS-CoV2 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4224-4235.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00683
    • Vancouver

      Oliveira VGF, Zin PPK, Puhl AC, Zorn KM, Foil DH, Lane TR, Hurst B, Tavella TA, Costa FTM, Lakshmanane P, Bernatchez J, Godoy AS de, Oliva G, Siqueira-Neto JL, Madrid PB, Ekins S. Machine learning models identify inhibitors of SARS-CoV2 [Internet]. Journal of Chemical Information and Modeling. 2021 ; 61( 9): 4224-4235.[citado 2025 nov. 09 ] Available from: https://doi.org/10.1021/acs.jcim.1c00683

Biblioteca Digital de Produção Intelectual da Universidade de São Paulo     2012 - 2025