Filtros : "WOLF, DENIS FERNANDO" "Financiado pela CAPES" Removido: "2009" Limpar

Filtros



Refine with date range


  • Source: Neurocomputing. Unidades: EESC, ICMC

    Subjects: APRENDIZADO COMPUTACIONAL, REDES NEURAIS, ENGENHARIA ELÉTRICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, v. 511, p. 43-53, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.neucom.2022.09.042. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2022). Leveraging convergence behavior to balance conflicting tasks in multitask learning. Neurocomputing, 511, 43-53. doi:10.1016/j.neucom.2022.09.042
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. Leveraging convergence behavior to balance conflicting tasks in multitask learning [Internet]. Neurocomputing. 2022 ; 511 43-53.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.neucom.2022.09.042
  • Source: IEEE Transactions on Intelligent Transportation Systems. Unidades: ICMC, EESC

    Subjects: VEÍCULOS AUTÔNOMOS, TRÁFEGO RODOVIÁRIO, ANÁLISE DE TRAJETÓRIAS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SILVA, Júnior Anderson Rodrigues da et al. Sparse road network model for autonomous navigation using clothoids. IEEE Transactions on Intelligent Transportation Systems, v. 23, n. 2, p. 885-898, 2022Tradução . . Disponível em: https://doi.org/10.1109/TITS.2020.3016620. Acesso em: 27 nov. 2025.
    • APA

      Silva, J. A. R. da, Gomes, I. P., Wolf, D. F., & Grassi Júnior, V. (2022). Sparse road network model for autonomous navigation using clothoids. IEEE Transactions on Intelligent Transportation Systems, 23( 2), 885-898. doi:10.1109/TITS.2020.3016620
    • NLM

      Silva JAR da, Gomes IP, Wolf DF, Grassi Júnior V. Sparse road network model for autonomous navigation using clothoids [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2022 ; 23( 2): 885-898.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2020.3016620
    • Vancouver

      Silva JAR da, Gomes IP, Wolf DF, Grassi Júnior V. Sparse road network model for autonomous navigation using clothoids [Internet]. IEEE Transactions on Intelligent Transportation Systems. 2022 ; 23( 2): 885-898.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/TITS.2020.3016620
  • Source: Engineering Applications of Artificial Intelligence. Unidades: EESC, ICMC

    Subjects: TOMADA DE DECISÃO, ANÁLISE DE DESEMPENHO, APRENDIZADO COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKAMURA, Angelica Tiemi Mizuno e GRASSI JÚNIOR, Valdir e WOLF, Denis Fernando. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, v. 100, p. 1-10, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.engappai.2021.104205. Acesso em: 27 nov. 2025.
    • APA

      Nakamura, A. T. M., Grassi Júnior, V., & Wolf, D. F. (2021). An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation. Engineering Applications of Artificial Intelligence, 100, 1-10. doi:10.1016/j.engappai.2021.104205
    • NLM

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
    • Vancouver

      Nakamura ATM, Grassi Júnior V, Wolf DF. An effective combination of loss gradients for multi-task learning applied on instance segmentation and depth estimation [Internet]. Engineering Applications of Artificial Intelligence. 2021 ; 100 1-10.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.engappai.2021.104205
  • Source: Journal of Intelligent & Robotic Systems. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, FALHAS COMPUTACIONAIS, APRENDIZADO COMPUTACIONAL, SISTEMAS DINÂMICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GOMES, Iago Pachêco e WOLF, Denis Fernando. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis. Journal of Intelligent & Robotic Systems, v. 101, n. Ja 2021, p. 1-21, 2021Tradução . . Disponível em: https://doi.org/10.1007/s10846-020-01293-y. Acesso em: 27 nov. 2025.
    • APA

      Gomes, I. P., & Wolf, D. F. (2021). Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis. Journal of Intelligent & Robotic Systems, 101( Ja 2021), 1-21. doi:10.1007/s10846-020-01293-y
    • NLM

      Gomes IP, Wolf DF. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 101( Ja 2021): 1-21.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-020-01293-y
    • Vancouver

      Gomes IP, Wolf DF. Health monitoring system for autonomous vehicles using dynamic bayesian networks for diagnosis and prognosis [Internet]. Journal of Intelligent & Robotic Systems. 2021 ; 101( Ja 2021): 1-21.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10846-020-01293-y
  • Source: IEEE Robotics and Automation Letters. Unidade: ICMC

    Subjects: ANÁLISE DE TRAJETÓRIAS, GEOMETRIA E MODELAGEM COMPUTACIONAL

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RIDEL, Daniela Alves et al. Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robotics and Automation Letters, v. 5, n. 2, p. 2816-2823, 2020Tradução . . Disponível em: https://doi.org/10.1109/LRA.2020.2974393. Acesso em: 27 nov. 2025.
    • APA

      Ridel, D. A., Deo, N., Wolf, D. F., & Trivedi, M. (2020). Scene compliant trajectory forecast with agent-centric spatio-temporal grids. IEEE Robotics and Automation Letters, 5( 2), 2816-2823. doi:10.1109/LRA.2020.2974393
    • NLM

      Ridel DA, Deo N, Wolf DF, Trivedi M. Scene compliant trajectory forecast with agent-centric spatio-temporal grids [Internet]. IEEE Robotics and Automation Letters. 2020 ; 5( 2): 2816-2823.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LRA.2020.2974393
    • Vancouver

      Ridel DA, Deo N, Wolf DF, Trivedi M. Scene compliant trajectory forecast with agent-centric spatio-temporal grids [Internet]. IEEE Robotics and Automation Letters. 2020 ; 5( 2): 2816-2823.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LRA.2020.2974393
  • Source: Proceedings. Conference titles: International Joint Conference on Neural Networks - IJCNN. Unidades: ICMC, EESC

    Subjects: ALGORITMOS, REDES NEURAIS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HORITA, Luiz Ricardo Takeshi e WOLF, Denis Fernando e GRASSI JÚNIOR, Valdir. Effective deep reinforcement learning setups for multiple goals on visual navigation. 2020, Anais.. Piscataway: IEEE, 2020. Disponível em: https://doi.org/10.1109/IJCNN48605.2020.9206917. Acesso em: 27 nov. 2025.
    • APA

      Horita, L. R. T., Wolf, D. F., & Grassi Júnior, V. (2020). Effective deep reinforcement learning setups for multiple goals on visual navigation. In Proceedings. Piscataway: IEEE. doi:10.1109/IJCNN48605.2020.9206917
    • NLM

      Horita LRT, Wolf DF, Grassi Júnior V. Effective deep reinforcement learning setups for multiple goals on visual navigation [Internet]. Proceedings. 2020 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/IJCNN48605.2020.9206917
    • Vancouver

      Horita LRT, Wolf DF, Grassi Júnior V. Effective deep reinforcement learning setups for multiple goals on visual navigation [Internet]. Proceedings. 2020 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/IJCNN48605.2020.9206917
  • Source: Proceedings. Conference titles: IEEE Intelligent Vehicles Symposium - IV. Unidade: ICMC

    Subjects: VISÃO COMPUTACIONAL, REDES NEURAIS, IMAGEM

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WATANABE, Thomio e WOLF, Denis Fernando. Instance segmentation as image segmentation annotation. 2019, Anais.. Piscataway: IEEE, 2019. Disponível em: https://doi.org/10.1109/IVS.2019.8814026. Acesso em: 27 nov. 2025.
    • APA

      Watanabe, T., & Wolf, D. F. (2019). Instance segmentation as image segmentation annotation. In Proceedings. Piscataway: IEEE. doi:10.1109/IVS.2019.8814026
    • NLM

      Watanabe T, Wolf DF. Instance segmentation as image segmentation annotation [Internet]. Proceedings. 2019 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/IVS.2019.8814026
    • Vancouver

      Watanabe T, Wolf DF. Instance segmentation as image segmentation annotation [Internet]. Proceedings. 2019 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/IVS.2019.8814026
  • Source: Proceedings. Conference titles: Latin American Robotic Symposium - LARS. Unidade: ICMC

    Subjects: VEÍCULOS AUTÔNOMOS, ROBÓTICA, VISÃO COMPUTACIONAL

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      WATANABE, Thomio e WOLF, Denis Fernando. Verisimilar percept sequences tests for autonomous driving intelligent agent assessment. 2018, Anais.. Los Alamitos: IEEE, 2018. Disponível em: https://doi.org/10.1109/LARS/SBR/WRE.2018.00048. Acesso em: 27 nov. 2025.
    • APA

      Watanabe, T., & Wolf, D. F. (2018). Verisimilar percept sequences tests for autonomous driving intelligent agent assessment. In Proceedings. Los Alamitos: IEEE. doi:10.1109/LARS/SBR/WRE.2018.00048
    • NLM

      Watanabe T, Wolf DF. Verisimilar percept sequences tests for autonomous driving intelligent agent assessment [Internet]. Proceedings. 2018 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LARS/SBR/WRE.2018.00048
    • Vancouver

      Watanabe T, Wolf DF. Verisimilar percept sequences tests for autonomous driving intelligent agent assessment [Internet]. Proceedings. 2018 ;[citado 2025 nov. 27 ] Available from: https://doi.org/10.1109/LARS/SBR/WRE.2018.00048

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025