Filtros : "Shestakov, Ivan P" Removido: "MATEMÁTICA" Limpar

Filtros



Refine with date range


  • Source: Algebra and Logic. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e BITTENCOURT, Vinicius Souza. Nonmatrix varieties of nonassociative algebras. Algebra and Logic, v. 62, p. 532-547, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10469-024-09763-0. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Bittencourt, V. S. (2024). Nonmatrix varieties of nonassociative algebras. Algebra and Logic, 62, 532-547. doi:10.1007/s10469-024-09763-0
    • NLM

      Shestakov IP, Bittencourt VS. Nonmatrix varieties of nonassociative algebras [Internet]. Algebra and Logic. 2024 ; 62 532-547.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-024-09763-0
    • Vancouver

      Shestakov IP, Bittencourt VS. Nonmatrix varieties of nonassociative algebras [Internet]. Algebra and Logic. 2024 ; 62 532-547.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-024-09763-0
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e RASSKAZOVA, Marina e SHESTAKOV, Ivan P. Simple binary Lie and non-Lie superalgebra has solvable even part. Journal of Algebra, v. 655, p. 483-492, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2023.07.030. Acesso em: 27 nov. 2025.
    • APA

      Grichkov, A., Rasskazova, M., & Shestakov, I. P. (2024). Simple binary Lie and non-Lie superalgebra has solvable even part. Journal of Algebra, 655, 483-492. doi:10.1016/j.jalgebra.2023.07.030
    • NLM

      Grichkov A, Rasskazova M, Shestakov IP. Simple binary Lie and non-Lie superalgebra has solvable even part [Internet]. Journal of Algebra. 2024 ; 655 483-492.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.07.030
    • Vancouver

      Grichkov A, Rasskazova M, Shestakov IP. Simple binary Lie and non-Lie superalgebra has solvable even part [Internet]. Journal of Algebra. 2024 ; 655 483-492.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2023.07.030
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto et al. Commutative power-associative representations of symmetric matrices. Journal of Algebra, v. 644, p. 411-427, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2024.01.017. Acesso em: 27 nov. 2025.
    • APA

      Murakami, L. S. I., Nascimento, P. S. M. do, Shestakov, I. P., & Picanço da Silva, J. (2024). Commutative power-associative representations of symmetric matrices. Journal of Algebra, 644, 411-427. doi:10.1016/j.jalgebra.2024.01.017
    • NLM

      Murakami LSI, Nascimento PSM do, Shestakov IP, Picanço da Silva J. Commutative power-associative representations of symmetric matrices [Internet]. Journal of Algebra. 2024 ; 644 411-427.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.01.017
    • Vancouver

      Murakami LSI, Nascimento PSM do, Shestakov IP, Picanço da Silva J. Commutative power-associative representations of symmetric matrices [Internet]. Journal of Algebra. 2024 ; 644 411-427.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2024.01.017
  • Source: Algebra and Logic. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich e SHESTAKOV, Ivan P. Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank. Algebra and Logic, v. 63, p. 56-64, 2024Tradução . . Disponível em: https://doi.org/10.1007/s10469-024-09770-1. Acesso em: 27 nov. 2025.
    • APA

      Pchelintsev, S. V., & Shestakov, I. P. (2024). Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank. Algebra and Logic, 63, 56-64. doi:10.1007/s10469-024-09770-1
    • NLM

      Pchelintsev SV, Shestakov IP. Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank [Internet]. Algebra and Logic. 2024 ; 63 56-64.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-024-09770-1
    • Vancouver

      Pchelintsev SV, Shestakov IP. Finite generatedness of Veronese subalgebras of a free alternative algebra of finite rank [Internet]. Algebra and Logic. 2024 ; 63 56-64.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-024-09770-1
  • Source: Communications in Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ISMAILOV, Nurlan e SHESTAKOV, Ivan P e ZHANG, Zerui. Free commutative two-step-associative algebras. Communications in Algebra, v. 52, n. 12, p. 4992–5004, 2024Tradução . . Disponível em: https://doi.org/10.1080/00927872.2024.2362345. Acesso em: 27 nov. 2025.
    • APA

      Ismailov, N., Shestakov, I. P., & Zhang, Z. (2024). Free commutative two-step-associative algebras. Communications in Algebra, 52( 12), 4992–5004. doi:10.1080/00927872.2024.2362345
    • NLM

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ; 52( 12): 4992–5004.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
    • Vancouver

      Ismailov N, Shestakov IP, Zhang Z. Free commutative two-step-associative algebras [Internet]. Communications in Algebra. 2024 ; 52( 12): 4992–5004.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1080/00927872.2024.2362345
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Assunto: ÁLGEBRAS DE JORDAN

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SHESTAKOV, Ivan P. Alternative M2-algebras and Γ-algebras. São Paulo Journal of Mathematical Sciences, v. 18, p. 696–709, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40863-023-00366-8. Acesso em: 27 nov. 2025.
    • APA

      Grichkov, A., & Shestakov, I. P. (2024). Alternative M2-algebras and Γ-algebras. São Paulo Journal of Mathematical Sciences, 18, 696–709. doi:10.1007/s40863-023-00366-8
    • NLM

      Grichkov A, Shestakov IP. Alternative M2-algebras and Γ-algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18 696–709.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-023-00366-8
    • Vancouver

      Grichkov A, Shestakov IP. Alternative M2-algebras and Γ-algebras [Internet]. São Paulo Journal of Mathematical Sciences. 2024 ; 18 696–709.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-023-00366-8
  • Source: Israel Journal of Mathematics. Unidade: IME

    Assunto: ÁLGEBRAS LIVRES

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e SVERCHKOV, Sergei. New central elements in free alternative algebras. Israel Journal of Mathematics, v. 264, p. 363–388, 2024Tradução . . Disponível em: https://doi.org/10.1007/s11856-024-2650-9. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Sverchkov, S. (2024). New central elements in free alternative algebras. Israel Journal of Mathematics, 264, 363–388. doi:10.1007/s11856-024-2650-9
    • NLM

      Shestakov IP, Sverchkov S. New central elements in free alternative algebras [Internet]. Israel Journal of Mathematics. 2024 ; 264 363–388.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11856-024-2650-9
    • Vancouver

      Shestakov IP, Sverchkov S. New central elements in free alternative algebras [Internet]. Israel Journal of Mathematics. 2024 ; 264 363–388.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s11856-024-2650-9
  • Unidade: IME

    Subjects: VARIEDADES ALGÉBRICAS, ÁLGEBRAS DE JORDAN, ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ROLDAN URRUTIA, Ronald Alexandre. Admissible and locally admissible varieties of algebras. 2024. Dissertação (Mestrado) – Universidade de São Paulo, São Paulo, 2024. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122024-133311/. Acesso em: 27 nov. 2025.
    • APA

      Roldan Urrutia, R. A. (2024). Admissible and locally admissible varieties of algebras (Dissertação (Mestrado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122024-133311/
    • NLM

      Roldan Urrutia RA. Admissible and locally admissible varieties of algebras [Internet]. 2024 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122024-133311/
    • Vancouver

      Roldan Urrutia RA. Admissible and locally admissible varieties of algebras [Internet]. 2024 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-11122024-133311/
  • Source: São Paulo Journal of Mathematical Sciences. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, LAÇOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MURAKAMI, Lúcia Satie Ikemoto e PERESI, Luiz Antonio e SHESTAKOV, Ivan P. A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, v. 16, n. 1, p. 84-130, 2022Tradução . . Disponível em: https://doi.org/10.1007/s40863-021-00248-x. Acesso em: 27 nov. 2025.
    • APA

      Murakami, L. S. I., Peresi, L. A., & Shestakov, I. P. (2022). A retrospect of the research in nonassociative algebras in IME-USP. São Paulo Journal of Mathematical Sciences, 16( 1), 84-130. doi:10.1007/s40863-021-00248-x
    • NLM

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
    • Vancouver

      Murakami LSI, Peresi LA, Shestakov IP. A retrospect of the research in nonassociative algebras in IME-USP [Internet]. São Paulo Journal of Mathematical Sciences. 2022 ; 16( 1): 84-130.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s40863-021-00248-x
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OVALLE, Daniel Felipe Castro e SHESTAKOV, Ivan P. Composition color algebras. Journal of Algebra, v. 602, p. 83-129, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2022.03.012. Acesso em: 27 nov. 2025.
    • APA

      Ovalle, D. F. C., & Shestakov, I. P. (2022). Composition color algebras. Journal of Algebra, 602, 83-129. doi:10.1016/j.jalgebra.2022.03.012
    • NLM

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ; 602 83-129.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
    • Vancouver

      Ovalle DFC, Shestakov IP. Composition color algebras [Internet]. Journal of Algebra. 2022 ; 602 83-129.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2022.03.012
  • Source: Algebra and Logic. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GRICHKOV, Alexandre e SHESTAKOV, Ivan P e RASSKAZOVA, Marina. New examples of binary Lie superalgebras and algebras. Algebra and Logic, v. 60, n. 6, p. 366-374, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10469-022-09663-1. Acesso em: 27 nov. 2025.
    • APA

      Grichkov, A., Shestakov, I. P., & Rasskazova, M. (2022). New examples of binary Lie superalgebras and algebras. Algebra and Logic, 60( 6), 366-374. doi:10.1007/s10469-022-09663-1
    • NLM

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
    • Vancouver

      Grichkov A, Shestakov IP, Rasskazova M. New examples of binary Lie superalgebras and algebras [Internet]. Algebra and Logic. 2022 ; 60( 6): 366-374.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1007/s10469-022-09663-1
  • Source: Revista Matemática Iberoamericana. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LÓPEZ SOLÍS, Victor Hugo e SHESTAKOV, Ivan P. On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, v. 38, n. 4, p. 1219-1238, 2022Tradução . . Disponível em: https://doi.org/10.4171/RMI/1299. Acesso em: 27 nov. 2025.
    • APA

      López Solís, V. H., & Shestakov, I. P. (2022). On a problem by Nathan Jacobson. Revista Matemática Iberoamericana, 38( 4), 1219-1238. doi:10.4171/RMI/1299
    • NLM

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4171/RMI/1299
    • Vancouver

      López Solís VH, Shestakov IP. On a problem by Nathan Jacobson [Internet]. Revista Matemática Iberoamericana. 2022 ; 38( 4): 1219-1238.[citado 2025 nov. 27 ] Available from: https://doi.org/10.4171/RMI/1299
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS, ÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEN, Yuqun e SHESTAKOV, Ivan P e ZHANG, Zerui. Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, v. 590, p. 234-253, 2022Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.10.015. Acesso em: 27 nov. 2025.
    • APA

      Chen, Y., Shestakov, I. P., & Zhang, Z. (2022). Free Lie-admissible algebras and an analogue of the PBW theorem. Journal of Algebra, 590, 234-253. doi:10.1016/j.jalgebra.2021.10.015
    • NLM

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
    • Vancouver

      Chen Y, Shestakov IP, Zhang Z. Free Lie-admissible algebras and an analogue of the PBW theorem [Internet]. Journal of Algebra. 2022 ; 590 234-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.10.015
  • Source: Journal of Algebra. Unidade: IME

    Assunto: ÁLGEBRA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PCHELINTSEV, Sergey Valentinovich e SHASHKOV, Oleg Vladimirovich e SHESTAKOV, Ivan P. Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, v. 572, p. 111-128, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2020.12.009. Acesso em: 27 nov. 2025.
    • APA

      Pchelintsev, S. V., Shashkov, O. V., & Shestakov, I. P. (2021). Right alternative bimodules over Cayley algebra and coordinatization theorem. Journal of Algebra, 572, 111-128. doi:10.1016/j.jalgebra.2020.12.009
    • NLM

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
    • Vancouver

      Pchelintsev SV, Shashkov OV, Shestakov IP. Right alternative bimodules over Cayley algebra and coordinatization theorem [Internet]. Journal of Algebra. 2021 ; 572 111-128.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2020.12.009
  • Source: Algebra Logika. Unidade: IME

    Assunto: ÁLGEBRA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      POZHIDAEV, A. P. e SHESTAKOV, Ivan P. Simple right-symmetric (1,1)-superalgebras. Algebra Logika, v. 60, n. 2, p. 166-175, 2021Tradução . . Disponível em: https://doi.org/10.33048/alglog.2021.60.204. Acesso em: 27 nov. 2025.
    • APA

      Pozhidaev, A. P., & Shestakov, I. P. (2021). Simple right-symmetric (1,1)-superalgebras. Algebra Logika, 60( 2), 166-175. doi:10.33048/alglog.2021.60.204
    • NLM

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2025 nov. 27 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
    • Vancouver

      Pozhidaev AP, Shestakov IP. Simple right-symmetric (1,1)-superalgebras [Internet]. Algebra Logika. 2021 ; 60( 2): 166-175.[citado 2025 nov. 27 ] Available from: https://doi.org/10.33048/alglog.2021.60.204
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Subjects: ESTRUTURAS ALGÉBRICAS ORDENADAS, ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SHESTAKOV, Ivan P e ZHANG, Zerui. Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, v. 225, n. 8, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2020.106636. Acesso em: 27 nov. 2025.
    • APA

      Shestakov, I. P., & Zhang, Z. (2021). Automorphisms of finitely generated relatively free bicommutative algebras. Journal of Pure and Applied Algebra, 225( 8). doi:10.1016/j.jpaa.2020.106636
    • NLM

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106636
    • Vancouver

      Shestakov IP, Zhang Z. Automorphisms of finitely generated relatively free bicommutative algebras [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 8):[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2020.106636
  • Source: Linear Algebra and its Applications. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS NÃO ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      SANTOS FILHO, G. e MURAKAMI, Lúcia Satie Ikemoto e SHESTAKOV, Ivan P. Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, v. 621, p. 235-253, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.laa.2021.03.023. Acesso em: 27 nov. 2025.
    • APA

      Santos Filho, G., Murakami, L. S. I., & Shestakov, I. P. (2021). Locally finite coalgebras and the locally nilpotent radical I. Linear Algebra and its Applications, 621, 235-253. doi:10.1016/j.laa.2021.03.023
    • NLM

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
    • Vancouver

      Santos Filho G, Murakami LSI, Shestakov IP. Locally finite coalgebras and the locally nilpotent radical I [Internet]. Linear Algebra and its Applications. 2021 ; 621 235-253.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.laa.2021.03.023
  • Source: Journal of Pure and Applied Algebra. Unidade: IME

    Assunto: ANÉIS E ÁLGEBRAS ASSOCIATIVOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FUTORNY, Vyacheslav e SCHWARZ, João Fernando e SHESTAKOV, Ivan P. LD-stability for Goldie rings. Journal of Pure and Applied Algebra, v. 225, n. 11, p. 1-14, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jpaa.2021.106741. Acesso em: 27 nov. 2025.
    • APA

      Futorny, V., Schwarz, J. F., & Shestakov, I. P. (2021). LD-stability for Goldie rings. Journal of Pure and Applied Algebra, 225( 11), 1-14. doi:10.1016/j.jpaa.2021.106741
    • NLM

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
    • Vancouver

      Futorny V, Schwarz JF, Shestakov IP. LD-stability for Goldie rings [Internet]. Journal of Pure and Applied Algebra. 2021 ; 225( 11): 1-14.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jpaa.2021.106741
  • Unidade: IME

    Subjects: ANÉIS E ÁLGEBRAS ASSOCIATIVOS, ÁLGEBRAS DE JORDAN, ÁLGEBRAS LIVRES

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CRODE, Sidney Dale. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa. 2021. Tese (Doutorado) – Universidade de São Paulo, São Paulo, 2021. Disponível em: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/. Acesso em: 27 nov. 2025.
    • APA

      Crode, S. D. (2021). Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa (Tese (Doutorado). Universidade de São Paulo, São Paulo. Recuperado de https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
    • NLM

      Crode SD. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa [Internet]. 2021 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
    • Vancouver

      Crode SD. Álgebras de Jordan de tipo hermitiano e de Weyl e derivações localmente nilpotentes de álgebra livre associativa [Internet]. 2021 ;[citado 2025 nov. 27 ] Available from: https://www.teses.usp.br/teses/disponiveis/45/45131/tde-02062021-102157/
  • Source: Journal of Algebra. Unidade: IME

    Subjects: ÁLGEBRAS DE LIE, SUPERÁLGEBRAS DE LIE

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      PETROGRADSKY, Victor e SHESTAKOV, Ivan P. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, v. 574, p. 453-513, 2021Tradução . . Disponível em: https://doi.org/10.1016/j.jalgebra.2021.02.001. Acesso em: 27 nov. 2025.
    • APA

      Petrogradsky, V., & Shestakov, I. P. (2021). Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras. Journal of Algebra, 574, 453-513. doi:10.1016/j.jalgebra.2021.02.001
    • NLM

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001
    • Vancouver

      Petrogradsky V, Shestakov IP. Fractal nil graded Lie, associative, Poisson, and Jordan superalgebras [Internet]. Journal of Algebra. 2021 ; 574 453-513.[citado 2025 nov. 27 ] Available from: https://doi.org/10.1016/j.jalgebra.2021.02.001

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025