Filtros : "Computational and Applied Mathematics" "Financiamento CNPq" Limpar

Filtros



Refine with date range


  • Source: Computational and Applied Mathematics. Unidade: IME

    Subjects: INFERÊNCIA NÃO PARAMÉTRICA, DISTRIBUIÇÕES (PROBABILIDADE), ANÁLISE DE REGRESSÃO E DE CORRELAÇÃO, FADIGA DOS MATERIAIS, SEGURO DE ACIDENTE

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DASILVA, Alan et al. Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data. Computational and Applied Mathematics, v. 44, p. 1-48, 2025Tradução . . Disponível em: https://doi.org/10.1007/s40314-024-03037-2. Acesso em: 17 nov. 2025.
    • APA

      Dasilva, A., Saulo, H., Vila, R., & Pal, S. (2025). Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data. Computational and Applied Mathematics, 44, 1-48. doi:10.1007/s40314-024-03037-2
    • NLM

      Dasilva A, Saulo H, Vila R, Pal S. Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data [Internet]. Computational and Applied Mathematics. 2025 ; 44 1-48.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-024-03037-2
    • Vancouver

      Dasilva A, Saulo H, Vila R, Pal S. Scale-mixture Birnbaum-Saunders quantile regression models applied to personal accident insurance data [Internet]. Computational and Applied Mathematics. 2025 ; 44 1-48.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-024-03037-2
  • Source: Computational and Applied Mathematics. Unidade: ICMC

    Subjects: ALGORITMOS, TOPOLOGIA COMBINATÓRIA, ANÁLISE DE DESEMPENHO

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CASTELO, Antonio et al. A generalized combinatorial marching hypercube algorithm. Computational and Applied Mathematics, v. 43, p. 1-23, 2024Tradução . . Disponível em: https://doi.org/10.1007/s40314-024-02627-4. Acesso em: 17 nov. 2025.
    • APA

      Castelo, A., Nakassima, G. K., Bueno, L. M., & Gameiro, M. F. (2024). A generalized combinatorial marching hypercube algorithm. Computational and Applied Mathematics, 43, 1-23. doi:10.1007/s40314-024-02627-4
    • NLM

      Castelo A, Nakassima GK, Bueno LM, Gameiro MF. A generalized combinatorial marching hypercube algorithm [Internet]. Computational and Applied Mathematics. 2024 ; 43 1-23.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-024-02627-4
    • Vancouver

      Castelo A, Nakassima GK, Bueno LM, Gameiro MF. A generalized combinatorial marching hypercube algorithm [Internet]. Computational and Applied Mathematics. 2024 ; 43 1-23.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-024-02627-4
  • Source: Computational and Applied Mathematics. Unidade: ICMC

    Subjects: PROBLEMAS INVERSOS, MÉTODOS NUMÉRICOS, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      REDDY, Gujji Murali Mohan et al. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, v. 40, p. 1-26, 2021Tradução . . Disponível em: https://doi.org/10.1007/s40314-021-01454-1. Acesso em: 17 nov. 2025.
    • APA

      Reddy, G. M. M., Nanda, P., Vynnycky, M., & Cuminato, J. A. (2021). An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem. Computational and Applied Mathematics, 40, 1-26. doi:10.1007/s40314-021-01454-1
    • NLM

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
    • Vancouver

      Reddy GMM, Nanda P, Vynnycky M, Cuminato JA. An adaptive boundary algorithm for the reconstruction of boundary and initial data using the method of fundamental solutions for the inverse Cauchy-Stefan problem [Internet]. Computational and Applied Mathematics. 2021 ; 40 1-26.[citado 2025 nov. 17 ] Available from: https://doi.org/10.1007/s40314-021-01454-1
  • Source: Computational and Applied Mathematics. Unidade: IME

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      RAGAZZO, Clodoaldo Grotta. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics, v. 20, n. 1-2, p. 221-243, 2001Tradução . . Acesso em: 17 nov. 2025.
    • APA

      Ragazzo, C. G. (2001). Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics, 20( 1-2), 221-243.
    • NLM

      Ragazzo CG. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics. 2001 ; 20( 1-2): 221-243.[citado 2025 nov. 17 ]
    • Vancouver

      Ragazzo CG. Localized solutions for Δu=−αu−u3 in strip domains and homoclinic orbits of finite dimensional approximations. Computational and Applied Mathematics. 2001 ; 20( 1-2): 221-243.[citado 2025 nov. 17 ]

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025