Filtros : "Journal of Optimization Theory and Applications" "IME-MAC" Removido: "Indexado no Inspec" Limpar

Filtros



Refine with date range


  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO NÃO LINEAR, CONVERGÊNCIA, ALGORITMOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, v. 206, p. 1-25, 2025Tradução . . Disponível em: https://doi.org/10.1007/s10957-025-02734-0. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Haeser, G., Maculan, N., & Ramirez, L. M. (2025). On the global convergence of a general class of augmented Lagrangian methods. Journal of Optimization Theory and Applications, 206, 1-25. doi:10.1007/s10957-025-02734-0
    • NLM

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
    • Vancouver

      Birgin EJG, Haeser G, Maculan N, Ramirez LM. On the global convergence of a general class of augmented Lagrangian methods [Internet]. Journal of Optimization Theory and Applications. 2025 ; 206 1-25.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-025-02734-0
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MASCARENHAS, Walter Figueiredo. A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, v. 181, n. 2, p. 456–469, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10957-018-1381-7. Acesso em: 07 nov. 2025.
    • APA

      Mascarenhas, W. F. (2019). A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, 181( 2), 456–469. doi:10.1007/s10957-018-1381-7
    • NLM

      Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1381-7
    • Vancouver

      Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-018-1381-7
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg et al. Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, v. 150, n. 1, p. 142-155, 2011Tradução . . Disponível em: https://doi.org/10.1007/s10957-011-9815-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Castelani, E., Martinez, A. L. M., & Martínez, J. M. (2011). Outer trust-region method for constrained optimization. Journal of Optimization Theory and Applications, 150( 1), 142-155. doi:10.1007/s10957-011-9815-5
    • NLM

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
    • Vancouver

      Birgin EJG, Castelani E, Martinez ALM, Martínez JM. Outer trust-region method for constrained optimization [Internet]. Journal of Optimization Theory and Applications. 2011 ; 150( 1): 142-155.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-011-9815-5
  • Source: Journal of Optimization Theory and Applications. Unidade: IME

    Assunto: PROGRAMAÇÃO NÃO LINEAR

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, v. 127, n. 2, p. 229-247, 2005Tradução . . Disponível em: https://doi.org/10.1007/s10957-005-6537-6. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2005). Local convergence of an inexact-restoration method and numerical experiments. Journal of Optimization Theory and Applications, 127( 2), 229-247. doi:10.1007/s10957-005-6537-6
    • NLM

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6
    • Vancouver

      Birgin EJG, Martínez JM. Local convergence of an inexact-restoration method and numerical experiments [Internet]. Journal of Optimization Theory and Applications. 2005 ; 127( 2): 229-247.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10957-005-6537-6

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025