A simple canonical form for nonlinear programming problems and its use (2019)
- Autor:
- Autor USP: MASCARENHAS, WALTER FIGUEIREDO - IME
- Unidade: IME
- DOI: 10.1007/s10957-018-1381-7
- Assunto: PROGRAMAÇÃO NÃO LINEAR
- Keywords: Second-order optimality conditions; Linear dependency
- Language: Inglês
- Imprenta:
- Source:
- Título do periódico: Journal of Optimization Theory and Applications
- ISSN: 0022-3239
- Volume/Número/Paginação/Ano: v. 181, n. 2, p. 456–469, 2019
- Este periódico é de assinatura
- Este artigo é de acesso aberto
- URL de acesso aberto
- Cor do Acesso Aberto: green
-
ABNT
MASCARENHAS, Walter Figueiredo. A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, New York, Springer, v. 181, n. 2, p. 456–469, 2019. Disponível em: < http://dx.doi.org/10.1007/s10957-018-1381-7 > DOI: 10.1007/s10957-018-1381-7. -
APA
Mascarenhas, W. F. (2019). A simple canonical form for nonlinear programming problems and its use. Journal of Optimization Theory and Applications, 181( 2), 456–469. doi:10.1007/s10957-018-1381-7 -
NLM
Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.Available from: http://dx.doi.org/10.1007/s10957-018-1381-7 -
Vancouver
Mascarenhas WF. A simple canonical form for nonlinear programming problems and its use [Internet]. Journal of Optimization Theory and Applications. 2019 ; 181( 2): 456–469.Available from: http://dx.doi.org/10.1007/s10957-018-1381-7 - Global estimation of hidden Markov model parameters via interval arithmetic
- The divergence of the barycentric Padé interpolants
- Moore: interval arithmetic in C++20
- A Newton’s method for the continuous quadratic knapsack problem
- On the backward stability of the second barycentric formula for interpolation
- The effects of rounding errors in the nodes on barycentric interpolation
- The stability of extended Floater–Hormann interpolants
- Robust Padé approximants may have spurious poles
- The stability of barycentric interpolation at the Chebyshev points of the second kind
- The divergence of the BFGS and Gauss Newton methods
Informações sobre o DOI: 10.1007/s10957-018-1381-7 (Fonte: oaDOI API)
Download do texto completo
Tipo | Nome | Link | |
---|---|---|---|
2904168.pdf |
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
Referências citadas na obra
Behling, R., Haeser, G., Ramos, A., Viana, D.: On a conjecture in second-order optimality conditions (2017). arXiv:1706.07833v1 [math.OC] |
---|
Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields. Springer, Berlin (1983) |
Perko, L.: Differential Equations and Dynamical Systems. Springer, New York (1991) |
Mascarenhas, W.F.: The affine scaling algorithm fails for stepsize 0.999. SIAM J. Optim. 7, 34–46 (1997) |
Mascarenhas, W.F.: Newton’s iterates can converge to non-stationary points. Math. Program. 112, 327–334 (2008) |
Mascarenhas, W.F.: The BFGS algorithm with exact line searches fails for nonconvex functions. Math. Program. 99, 49–61 (2004) |
Mascarenhas, W.F.: On the divergence of line search methods. Comput. Appl. Math. 26, 129–169 (2007) |
Mascarenhas, W.F.: The divergence of the BFGS and Gauss Newton methods. Math. Program. 147, 253–276 (2014) |
Andreani, R., Martínez, J.M., Schuverdt, M.L.: On second-order optimality conditions for nonlinear programming. Optimization 56, 529–542 (2007) |
Spivak, M.: Calculus on Manifolds, A Modern Approach to Classical Theorems of Advanced Calculus. Addison-Wesley, Boston (1965) |
Haeser, G.: An extension of Yuan’s lemma and its applications in optimization. J. Optim. Theory Appl. 174, 641–649 (2017) |
Dines, L.L.: On the mapping of quadratic forms. Bull. Am. Math. Soc. 47, 494–498 (1941) |