Filtros : "Journal of Mathematical Analysis and Applications" "Polônia" Limpar

Filtros



Refine with date range


  • Source: Journal of Mathematical Analysis and Applications. Unidade: IME

    Subjects: C* ÁLGEBRAS, GRUPOIDES

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BISSACOT, Rodrigo et al. Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, v. 538, n. artigo 128444, p. 1-46, 2024Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2024.128444. Acesso em: 16 nov. 2025.
    • APA

      Bissacot, R., Exel, R., Frausino, R., & Raszeja, T. (2024). Quasi-invariant measures for generalized approximately proper equivalence relations. Journal of Mathematical Analysis and Applications, 538( artigo 128444), 1-46. doi:10.1016/j.jmaa.2024.128444
    • NLM

      Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444
    • Vancouver

      Bissacot R, Exel R, Frausino R, Raszeja T. Quasi-invariant measures for generalized approximately proper equivalence relations [Internet]. Journal of Mathematical Analysis and Applications. 2024 ; 538( artigo 128444): 1-46.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2024.128444
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS, EQUAÇÃO DE SCHRODINGER

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, Flank David Morais et al. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, v. 457, n. Ja 2018, p. 336-360, 2018Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.08.014. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Dlotko, T., & Nascimento, M. J. D. (2018). Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation. Journal of Mathematical Analysis and Applications, 457( Ja 2018), 336-360. doi:10.1016/j.jmaa.2017.08.014
    • NLM

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
    • Vancouver

      Bezerra FDM, Carvalho AN de, Dlotko T, Nascimento MJD. Fractional Schrödinger equation; solvability and connection with classical Schrödinger equation [Internet]. Journal of Mathematical Analysis and Applications. 2018 ; 457( Ja 2018): 336-360.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.08.014
  • Source: Journal of Mathematical Analysis and Applications. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DA ONDA, ATRATORES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BEZERRA, F. D. M et al. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, v. 450, n. 1, p. 377-405, 2017Tradução . . Disponível em: https://doi.org/10.1016/j.jmaa.2017.01.024. Acesso em: 16 nov. 2025.
    • APA

      Bezerra, F. D. M., Carvalho, A. N. de, Cholewa, J. W., & Nascimento, M. J. D. (2017). Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics. Journal of Mathematical Analysis and Applications, 450( 1), 377-405. doi:10.1016/j.jmaa.2017.01.024
    • NLM

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024
    • Vancouver

      Bezerra FDM, Carvalho AN de, Cholewa JW, Nascimento MJD. Parabolic approximation of damped wave equations via fractional powers: fast growing nonlinearities and continuity of the dynamics [Internet]. Journal of Mathematical Analysis and Applications. 2017 ; 450( 1): 377-405.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.jmaa.2017.01.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025