Filtros : "PROCESSOS ESTOCÁSTICOS" "Löcherbach, Eva" Limpar

Filtros



Refine with date range


  • Unidade: IME

    Subjects: REDES NEURAIS, BIOINFORMÁTICA, PROCESSOS ESTOCÁSTICOS, NEUROFISIOLOGIA, PROBABILIDADE, NEUROCIÊNCIAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva e POUZAT, Christophe. Probabilistic spiking neuronal nets: neuromathematics for the computer era. . Cham: Springer. Disponível em: https://doi.org/10.1007/978-3-031-68409-8. Acesso em: 16 nov. 2025. , 2024
    • APA

      Galves, A., Löcherbach, E., & Pouzat, C. (2024). Probabilistic spiking neuronal nets: neuromathematics for the computer era. Cham: Springer. doi:10.1007/978-3-031-68409-8
    • NLM

      Galves A, Löcherbach E, Pouzat C. Probabilistic spiking neuronal nets: neuromathematics for the computer era [Internet]. 2024 ;[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-68409-8
    • Vancouver

      Galves A, Löcherbach E, Pouzat C. Probabilistic spiking neuronal nets: neuromathematics for the computer era [Internet]. 2024 ;[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/978-3-031-68409-8
  • Source: Stochastic Processes and their Applications. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CHEVALLIER, J et al. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, v. 129, n. 1, p. 1-27, 2019Tradução . . Disponível em: https://doi.org/10.1016/j.spa.2018.02.007. Acesso em: 16 nov. 2025.
    • APA

      Chevallier, J., Duarte, A., Löcherbach, E., & Ost, G. (2019). Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels. Stochastic Processes and their Applications, 129( 1), 1-27. doi:10.1016/j.spa.2018.02.007
    • NLM

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
    • Vancouver

      Chevallier J, Duarte A, Löcherbach E, Ost G. Mean field limits for nonlinear spatially extended Hawkes processes with exponential memory kernels [Internet]. Stochastic Processes and their Applications. 2019 ; 129( 1): 1-27.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1016/j.spa.2018.02.007
  • Source: ESAIM: Probability and Statistics. Unidade: IME

    Subjects: PROCESSOS ESTOCÁSTICOS, PROCESSOS DE MARKOV

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      DUARTE, Aline e LÖCHERBACH, Eva e OST, Guilherme. Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels. ESAIM: Probability and Statistics, v. 23, p. 770-796, 2019Tradução . . Disponível em: https://doi.org/10.1051/ps/2019005. Acesso em: 16 nov. 2025.
    • APA

      Duarte, A., Löcherbach, E., & Ost, G. (2019). Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels. ESAIM: Probability and Statistics, 23, 770-796. doi:10.1051/ps/2019005
    • NLM

      Duarte A, Löcherbach E, Ost G. Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels [Internet]. ESAIM: Probability and Statistics. 2019 ; 23 770-796.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1051/ps/2019005
    • Vancouver

      Duarte A, Löcherbach E, Ost G. Stability, convergence to equilibrium and simulation of non-linear Hawkes processes with memory kernels given by the sum of Erlang kernels [Internet]. ESAIM: Probability and Statistics. 2019 ; 23 770-796.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1051/ps/2019005
  • Source: Journal of Statistical Physics. Unidade: IME

    Assunto: PROCESSOS ESTOCÁSTICOS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      GALVES, Antonio e LÖCHERBACH, Eva e ORLANDI, Enza. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, v. 138, n. 1-3, p. 476-495, 2010Tradução . . Disponível em: https://doi.org/10.1007/s10955-009-9881-3. Acesso em: 16 nov. 2025.
    • APA

      Galves, A., Löcherbach, E., & Orlandi, E. (2010). Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations. Journal of Statistical Physics, 138( 1-3), 476-495. doi:10.1007/s10955-009-9881-3
    • NLM

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10955-009-9881-3
    • Vancouver

      Galves A, Löcherbach E, Orlandi E. Perfect simulation of infinite range gibbs measures and coupling with their finite range approximations [Internet]. Journal of Statistical Physics. 2010 ; 138( 1-3): 476-495.[citado 2025 nov. 16 ] Available from: https://doi.org/10.1007/s10955-009-9881-3

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025