Filtros : "Topological Methods in Nonlinear Analysis" "ICMC" Removido: "Indexado no MathSciNet" Limpar

Filtros



Refine with date range


  • Source: Topological Methods in Nonlinear Analysis. Unidades: IME, ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS-PARABÓLICAS QUASILINEARES

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      NAKASATO, Jean Carlos e PEREIRA, Marcone Corrêa. A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, v. 58, n. 1, p. 209-231, 2021Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2021.009. Acesso em: 28 nov. 2025.
    • APA

      Nakasato, J. C., & Pereira, M. C. (2021). A classical approach for the p -Laplacian in oscillating thin domains. Topological Methods in Nonlinear Analysis, 58( 1), 209-231. doi:10.12775/TMNA.2021.009
    • NLM

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009
    • Vancouver

      Nakasato JC, Pereira MC. A classical approach for the p -Laplacian in oscillating thin domains [Internet]. Topological Methods in Nonlinear Analysis. 2021 ; 58( 1): 209-231.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2021.009
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, ESTABILIDADE DE LIAPUNOV, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e SOUTO, Ginnara M. On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, v. 53, n. 1, p. 127-150, 2019Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2018.042. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., & Souto, G. M. (2019). On the Lyapunov stability theory for impulsive dynamical systems. Topological Methods in Nonlinear Analysis, 53( 1), 127-150. doi:10.12775/TMNA.2018.042
    • NLM

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.042
    • Vancouver

      Bonotto E de M, Souto GM. On the Lyapunov stability theory for impulsive dynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2019 ; 53( 1): 127-150.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2018.042
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: DINÂMICA TOPOLÓGICA, TOPOLOGIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      LIMA, Dahisy V. de S et al. Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, v. 51, n. 1, p. 259-311, 2018Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2017.047. Acesso em: 28 nov. 2025.
    • APA

      Lima, D. V. de S., Manzoli Neto, O., Rezende, K. A. de, & Silveira, M. R. da. (2018). Cancellations for circle-valued Morse functions via spectral sequences. Topological Methods in Nonlinear Analysis, 51( 1), 259-311. doi:10.12775/TMNA.2017.047
    • NLM

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.047
    • Vancouver

      Lima DV de S, Manzoli Neto O, Rezende KA de, Silveira MR da. Cancellations for circle-valued Morse functions via spectral sequences [Internet]. Topological Methods in Nonlinear Analysis. 2018 ; 51( 1): 259-311.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2017.047
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SISTEMAS DINÂMICOS, EQUAÇÕES IMPULSIVAS, ESTABILIDADE

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BONOTTO, Everaldo de Mello e GIMENES, Luciene P. e SOUTO, Ginnara M. Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, v. 49, n. 1, p. 133-163, 2017Tradução . . Disponível em: https://doi.org/10.12775/TMNA.2016.065. Acesso em: 28 nov. 2025.
    • APA

      Bonotto, E. de M., Gimenes, L. P., & Souto, G. M. (2017). Asymptotically almost periodic motions in impulsive semidynamical systems. Topological Methods in Nonlinear Analysis, 49( 1), 133-163. doi:10.12775/TMNA.2016.065
    • NLM

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2016.065
    • Vancouver

      Bonotto E de M, Gimenes LP, Souto GM. Asymptotically almost periodic motions in impulsive semidynamical systems [Internet]. Topological Methods in Nonlinear Analysis. 2017 ; 49( 1): 133-163.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/TMNA.2016.065
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, EQUAÇÕES NÃO LINEARES, EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 28 nov. 2025.
    • APA

      Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022
    • NLM

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.022
    • Vancouver

      Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.022
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS, SISTEMAS DINÂMICOS, ATRATORES

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BORTOLAN, Matheus C e CARVALHO, Alexandre Nolasco de. Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, v. 46, n. 2, p. 563-602, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.059. Acesso em: 28 nov. 2025.
    • APA

      Bortolan, M. C., & Carvalho, A. N. de. (2015). Strongly damped wave equation and its Yosida approximations. Topological Methods in Nonlinear Analysis, 46( 2), 563-602. doi:10.12775/tmna.2015.059
    • NLM

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.059
    • Vancouver

      Bortolan MC, Carvalho AN de. Strongly damped wave equation and its Yosida approximations [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 2): 563-602.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.059
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÃO DE SCHRODINGER, GEOMETRIA ALGÉBRICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ALVES, Claudianor O e NEMER, Rodrigo C. M e SOARES, Sérgio Henrique Monari. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, v. 46, n. 1, p. 329-362, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.050. Acesso em: 28 nov. 2025.
    • APA

      Alves, C. O., Nemer, R. C. M., & Soares, S. H. M. (2015). Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field. Topological Methods in Nonlinear Analysis, 46( 1), 329-362. doi:10.12775/tmna.2015.050
    • NLM

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.050
    • Vancouver

      Alves CO, Nemer RCM, Soares SHM. Nontrivial solutions for a mixed boundary problem for Schrödinger equations with an external magnetic field [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 46( 1): 329-362.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.050
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: EQUAÇÕES DIFERENCIAIS PARCIAIS, EQUAÇÕES DIFERENCIAIS PARCIAIS ELÍTICAS

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MELO, Jéssyca Lange Ferreira e MOREIRA DOS SANTOS, Ederson. A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 551-574, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.026. Acesso em: 28 nov. 2025.
    • APA

      Melo, J. L. F., & Moreira dos Santos, E. (2015). A fourth-order equation with critical growth: the effect of the domain topology. Topological Methods in Nonlinear Analysis, 45( 2), 551-574. doi:10.12775/tmna.2015.026
    • NLM

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.026
    • Vancouver

      Melo JLF, Moreira dos Santos E. A fourth-order equation with critical growth: the effect of the domain topology [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 551-574.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2015.026
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 233-256, 2013Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256.
    • NLM

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 28 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, TOPOLOGIA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIASI, Carlos e MONIS, Thaís Fernanda Mendes. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 409-419, 2013Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Biasi, C., & Monis, T. F. M. (2013). Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis, 41( 2), 409-419.
    • NLM

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 28 ]
    • Vancouver

      Biasi C, Monis TFM. Weak local Nash equilibrium. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 409-419.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARRIETA, José M e BEZERRA, Flank David Morais e CARVALHO, Alexandre Nolasco de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, v. 41, n. 2, p. 229-253, 2013Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Arrieta, J. M., Bezerra, F. D. M., & Carvalho, A. N. de. (2013). Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis, 41( 2), 229-253.
    • NLM

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 28 ]
    • Vancouver

      Arrieta JM, Bezerra FDM, Carvalho AN de. Rate of convergence of global attractors of some perturbed reaction-diffusion problems. Topological Methods in Nonlinear Analysis. 2013 ; 41( 2): 229-253.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, v. 42, n. 2, p. 345-376, 2013Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Aragão-Costa, É. R., Carvalho, A. N. de, Marín-Rubio, P., & Planas, G. (2013). Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis, 42( 2), 345-376.
    • NLM

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 28 ]
    • Vancouver

      Aragão-Costa ÉR, Carvalho AN de, Marín-Rubio P, Planas G. Gradient-like nonlinear semigroups with infinitely many equilibria and applications to cascade systems. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 345-376.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      ARAGÃO-COSTA, Éder Rítis et al. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, v. 39, n. 1, p. 57-82, 2012Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Aragão-Costa, É. R., Caraballo, T., Carvalho, A. N. de, & Langa, J. A. (2012). Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis, 39( 1), 57-82.
    • NLM

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 28 ]
    • Vancouver

      Aragão-Costa ÉR, Caraballo T, Carvalho AN de, Langa JA. Continuity of Lyapunov functions and of energy level for a generalized gradient semigroup. Topological Methods in Nonlinear Analysis. 2012 ; 39( 1): 57-82.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, v. 40, n. 1, p. 1-28, 2012Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2012). On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis, 40( 1), 1-28.
    • NLM

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2025 nov. 28 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. On convergence and compactness in parabolic problems with globally large diffusion and nonlinear boundary conditions. Topological Methods in Nonlinear Analysis. 2012 ; 40( 1): 1-28.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, v. 37, n. 1, p. 1-35, 2011Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2011). Localized singularities and Conley index. Topological Methods in Nonlinear Analysis, 37( 1), 1-35.
    • NLM

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2025 nov. 28 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Localized singularities and Conley index. Topological Methods in Nonlinear Analysis. 2011 ; 37( 1): 1-35.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, v. 35, n. 1, p. 1-32, 2010Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2010). Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis, 35( 1), 1-32.
    • NLM

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2025 nov. 28 ]
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Conley index and homology index braids in singular pertubation problems without uniqueness of solutions. Topological Methods in Nonlinear Analysis. 2010 ; 35( 1): 1-32.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: TOPOLOGIA, TOPOLOGIA ALGÉBRICA, TOPOLOGIA DIFERENCIAL, TOPOLOGIA GEOMÉTRICA

    How to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      FENILLE, Marcio Colombo e MANZOLI NETO, Oziride. Root problem for convenient maps. Topological Methods in Nonlinear Analysis, v. 36, n. 2, p. 327-352, 2010Tradução . . Acesso em: 28 nov. 2025.
    • APA

      Fenille, M. C., & Manzoli Neto, O. (2010). Root problem for convenient maps. Topological Methods in Nonlinear Analysis, 36( 2), 327-352.
    • NLM

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2025 nov. 28 ]
    • Vancouver

      Fenille MC, Manzoli Neto O. Root problem for convenient maps. Topological Methods in Nonlinear Analysis. 2010 ; 36( 2): 327-352.[citado 2025 nov. 28 ]
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Subjects: SINGULARIDADES, SISTEMAS DINÂMICOS, EQUAÇÕES DIFERENCIAIS ORDINÁRIAS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      OLIVEIRA, Regilene Delazari dos Santos e TEIXEIRA, Marco Antonio. On pairs of polynomial planar foliations. Topological Methods in Nonlinear Analysis, v. 30, n. 1, p. 139-155, 2007Tradução . . Disponível em: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf. Acesso em: 28 nov. 2025.
    • APA

      Oliveira, R. D. dos S., & Teixeira, M. A. (2007). On pairs of polynomial planar foliations. Topological Methods in Nonlinear Analysis, 30( 1), 139-155. Recuperado de https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
    • NLM

      Oliveira RD dos S, Teixeira MA. On pairs of polynomial planar foliations [Internet]. Topological Methods in Nonlinear Analysis. 2007 ; 30( 1): 139-155.[citado 2025 nov. 28 ] Available from: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
    • Vancouver

      Oliveira RD dos S, Teixeira MA. On pairs of polynomial planar foliations [Internet]. Topological Methods in Nonlinear Analysis. 2007 ; 30( 1): 139-155.[citado 2025 nov. 28 ] Available from: https://www.tmna.ncu.pl/static/files/v30n1-06.pdf
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, v. 28, n. 2, p. 199-233, 2006Tradução . . Disponível em: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2006). The suspension isomorphism for homology index braids. Topological Methods in Nonlinear Analysis, 28( 2), 199-233. Recuperado de http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • NLM

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2025 nov. 28 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
    • Vancouver

      Carbinatto M do C, Rybakowski KP. The suspension isomorphism for homology index braids [Internet]. Topological Methods in Nonlinear Analysis. 2006 ; 28( 2): 199-233.[citado 2025 nov. 28 ] Available from: http://www-users.mat.uni.torun.pl/~tmna/htmls/archives/vol-28-2.html
  • Source: Topological Methods in Nonlinear Analysis. Unidade: ICMC

    Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS

    Acesso à fonteAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      CARBINATTO, Maria do Carmo e RYBAKOWSKI, Krzysztof P. Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, v. 26, n. 1, p. 35-74, 2005Tradução . . Disponível em: https://doi.org/10.12775/tmna.2005.024. Acesso em: 28 nov. 2025.
    • APA

      Carbinatto, M. do C., & Rybakowski, K. P. (2005). Homology index braids in infinite-dimensional conley index theory. Topological Methods in Nonlinear Analysis, 26( 1), 35-74. doi:10.12775/tmna.2005.024
    • NLM

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2005.024
    • Vancouver

      Carbinatto M do C, Rybakowski KP. Homology index braids in infinite-dimensional conley index theory [Internet]. Topological Methods in Nonlinear Analysis. 2005 ; 26( 1): 35-74.[citado 2025 nov. 28 ] Available from: https://doi.org/10.12775/tmna.2005.024

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025