Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results (2015)
- Authors:
- Autor USP: CARVALHO, ALEXANDRE NOLASCO DE - ICMC
- Unidade: ICMC
- DOI: 10.12775/tmna.2015.022
- Subjects: EQUAÇÕES DIFERENCIAIS ORDINÁRIAS; EQUAÇÕES NÃO LINEARES; EQUAÇÕES DIFERENCIAIS PARCIAIS PARABÓLICAS
- Keywords: Fractional differential equations; semilinear equations; comparison results; critical nonlinearities
- Language: Inglês
- Imprenta:
- Source:
- Título: Topological Methods in Nonlinear Analysis
- ISSN: 1230-3429
- Volume/Número/Paginação/Ano: v. 45, n. 2, p. 439-467, 2015
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
ANDRADE, Bruno de et al. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, v. 45, n. 2, p. 439-467, 2015Tradução . . Disponível em: https://doi.org/10.12775/tmna.2015.022. Acesso em: 13 fev. 2026. -
APA
Andrade, B. de, Carvalho, A. N. de, Carvalho-Neto, P. M., & Marín-Rubio, P. (2015). Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results. Topological Methods in Nonlinear Analysis, 45( 2), 439-467. doi:10.12775/tmna.2015.022 -
NLM
Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2026 fev. 13 ] Available from: https://doi.org/10.12775/tmna.2015.022 -
Vancouver
Andrade B de, Carvalho AN de, Carvalho-Neto PM, Marín-Rubio P. Semilinear fractional differential equations: global solutions, critical nonlinearities and comparison results [Internet]. Topological Methods in Nonlinear Analysis. 2015 ; 45( 2): 439-467.[citado 2026 fev. 13 ] Available from: https://doi.org/10.12775/tmna.2015.022 - Compact convergence approach to reduction infinite dimensional systems to finite dimensions: applications
- Parabolic equations with localized large diffusion: rate of convergence of attractors
- Uma estimativa da dimensão fractal de atratores de sistemas dinâmicos gradient-like
- Characterization of non-autonomous attractors of a perturbed infinite-dimensional gradient system
- Lower semicontinuity of attractors for gradient systems
- A general approximation scheme for attractors of abstract parabolic problems
- Non-autonomous semilinear evolution equations with almost sectorial operators
- Spatial homogeneity in parabolic problems with nonlinear boundary conditions
- Dynamics in dumbbell domains I: continuity of the set of equilibria
- Continuity of dynamical structures for nonautonomous evolution equations under singular perturbations
Informações sobre o DOI: 10.12775/tmna.2015.022 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
