Resolvent convergence for Laplace operators on unbounded curved squeezed domains (2013)
- Authors:
- Autor USP: CARBINATTO, MARIA DO CARMO - ICMC
- Unidade: ICMC
- Assunto: EQUAÇÕES DIFERENCIAIS PARCIAIS
- Language: Inglês
- Imprenta:
- Publisher: Juliusz Schauder Center for Nonlinear Studies
- Publisher place: Torun
- Date published: 2013
- Source:
- Título do periódico: Topological Methods in Nonlinear Analysis
- ISSN: 1230-3429
- Volume/Número/Paginação/Ano: v. 42, n. 2, p. 233-256, 2013
-
ABNT
CARBINATTO, Maria do Carmo; RYBAKOWSKI, Krzysztof P. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, Torun, Juliusz Schauder Center for Nonlinear Studies, v. 42, n. 2, p. 233-256, 2013. -
APA
Carbinatto, M. do C., & Rybakowski, K. P. (2013). Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis, 42( 2), 233-256. -
NLM
Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256. -
Vancouver
Carbinatto M do C, Rybakowski KP. Resolvent convergence for Laplace operators on unbounded curved squeezed domains. Topological Methods in Nonlinear Analysis. 2013 ; 42( 2): 233-256. - Teoria da espectral para semigrupos
- Conley index continuation and thin domain problems
- Conley index and tubular neighborhoods
- Morse decompositions in the absence of uniqueness
- On perturbation of continuous maps
- Continuation of the connection matrix for singularly perturbed hyperbolic equations
- Continuation of the connection matrix in singular perturbation problems
- A propriedade de continuação singular na teoria do índice de Conley de dimensão infinita
- The suspension isomorphism for homology index braids
- Continuation of the connection matrix for singularly perturbed hyperbolic equations
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas