Filtros : "Numerical Functional Analysis and Optimization" "ANÁLISE FUNCIONAL" Removido: "2016" Limpar

Filtros



Refine with date range


  • Source: Numerical Functional Analysis and Optimization. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      JORDÃO, Thaís e MENEGATTO, Valdir Antônio. Reproducing properties of differentiable Mercer-like kernels on the sphere. Numerical Functional Analysis and Optimization, v. 33, n. 10, p. 1221-1243, 2012Tradução . . Disponível em: https://doi.org/10.1080/01630563.2012.660590. Acesso em: 30 nov. 2025.
    • APA

      Jordão, T., & Menegatto, V. A. (2012). Reproducing properties of differentiable Mercer-like kernels on the sphere. Numerical Functional Analysis and Optimization, 33( 10), 1221-1243. doi:10.1080/01630563.2012.660590
    • NLM

      Jordão T, Menegatto VA. Reproducing properties of differentiable Mercer-like kernels on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2012 ; 33( 10): 1221-1243.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2012.660590
    • Vancouver

      Jordão T, Menegatto VA. Reproducing properties of differentiable Mercer-like kernels on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2012 ; 33( 10): 1221-1243.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2012.660590
  • Source: Numerical Functional Analysis and Optimization. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e PIANTELLA, Ana Carla. Old and new on the Laplace-Beltrami derivative. Numerical Functional Analysis and Optimization, v. 32, n. 3, p. 309-341, 2011Tradução . . Disponível em: https://doi.org/10.1080/01630563.2010.536285. Acesso em: 30 nov. 2025.
    • APA

      Menegatto, V. A., & Piantella, A. C. (2011). Old and new on the Laplace-Beltrami derivative. Numerical Functional Analysis and Optimization, 32( 3), 309-341. doi:10.1080/01630563.2010.536285
    • NLM

      Menegatto VA, Piantella AC. Old and new on the Laplace-Beltrami derivative [Internet]. Numerical Functional Analysis and Optimization. 2011 ; 32( 3): 309-341.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2010.536285
    • Vancouver

      Menegatto VA, Piantella AC. Old and new on the Laplace-Beltrami derivative [Internet]. Numerical Functional Analysis and Optimization. 2011 ; 32( 3): 309-341.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2010.536285
  • Source: Numerical Functional Analysis and Optimization. Unidade: ICMC

    Assunto: ANÁLISE FUNCIONAL

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      MENEGATTO, Valdir Antônio e PIANTELLA, Ana Carla. Convergence for summation methods with multipliers on the sphere. Numerical Functional Analysis and Optimization, v. 31, n. 6, p. 738-753, 2010Tradução . . Disponível em: https://doi.org/10.1080/01630563.2010.494486. Acesso em: 30 nov. 2025.
    • APA

      Menegatto, V. A., & Piantella, A. C. (2010). Convergence for summation methods with multipliers on the sphere. Numerical Functional Analysis and Optimization, 31( 6), 738-753. doi:10.1080/01630563.2010.494486
    • NLM

      Menegatto VA, Piantella AC. Convergence for summation methods with multipliers on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2010 ; 31( 6): 738-753.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2010.494486
    • Vancouver

      Menegatto VA, Piantella AC. Convergence for summation methods with multipliers on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2010 ; 31( 6): 738-753.[citado 2025 nov. 30 ] Available from: https://doi.org/10.1080/01630563.2010.494486

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025