Old and new on the Laplace-Beltrami derivative (2011)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1080/01630563.2010.536285
- Assunto: ANÁLISE FUNCIONAL
- Language: Inglês
- Imprenta:
- Source:
- Título: Numerical Functional Analysis and Optimization
- ISSN: 0163-0563
- Volume/Número/Paginação/Ano: v. 32, n. 3, p. 309-341, 2011
- Este periódico é de acesso aberto
- Este artigo NÃO é de acesso aberto
-
ABNT
MENEGATTO, Valdir Antônio e PIANTELLA, Ana Carla. Old and new on the Laplace-Beltrami derivative. Numerical Functional Analysis and Optimization, v. 32, n. 3, p. 309-341, 2011Tradução . . Disponível em: https://doi.org/10.1080/01630563.2010.536285. Acesso em: 23 jan. 2026. -
APA
Menegatto, V. A., & Piantella, A. C. (2011). Old and new on the Laplace-Beltrami derivative. Numerical Functional Analysis and Optimization, 32( 3), 309-341. doi:10.1080/01630563.2010.536285 -
NLM
Menegatto VA, Piantella AC. Old and new on the Laplace-Beltrami derivative [Internet]. Numerical Functional Analysis and Optimization. 2011 ; 32( 3): 309-341.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1080/01630563.2010.536285 -
Vancouver
Menegatto VA, Piantella AC. Old and new on the Laplace-Beltrami derivative [Internet]. Numerical Functional Analysis and Optimization. 2011 ; 32( 3): 309-341.[citado 2026 jan. 23 ] Available from: https://doi.org/10.1080/01630563.2010.536285 - Positive definite functions on products of metric spaces via generalized Stieltjes functions
- Generalized interpolation on spheres using positive definite and related functions
- A complex approach to strict positive definiteness on spheres
- Strict positive definiteness on spheres via disk polynomilas
- Conditionally positive definite dot procuct kernels
- From Schoenberg coefficients to Schoenberg functions: strict positive definiteness
- Positive definite kernels on complex spheres
- Approximation by spherical convolution
- Strictly positive definite multivariate covariance functions on compact two-point homogeneous spaces
- Approximation on the sphere by weighted Fourier expansions
Informações sobre o DOI: 10.1080/01630563.2010.536285 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
