Convergence for summation methods with multipliers on the sphere (2010)
- Authors:
- Autor USP: MENEGATTO, VALDIR ANTONIO - ICMC
- Unidade: ICMC
- DOI: 10.1080/01630563.2010.494486
- Assunto: ANÁLISE FUNCIONAL
- Language: Inglês
- Imprenta:
- Publisher place: Philadelphia
- Date published: 2010
- Source:
- Título: Numerical Functional Analysis and Optimization
- ISSN: 0163-0563
- Volume/Número/Paginação/Ano: v. 31, n. 6, p. 738-753, 2010
- Este periódico é de assinatura
- Este artigo NÃO é de acesso aberto
- Cor do Acesso Aberto: closed
-
ABNT
MENEGATTO, Valdir Antônio e PIANTELLA, Ana Carla. Convergence for summation methods with multipliers on the sphere. Numerical Functional Analysis and Optimization, v. 31, n. 6, p. 738-753, 2010Tradução . . Disponível em: https://doi.org/10.1080/01630563.2010.494486. Acesso em: 31 out. 2024. -
APA
Menegatto, V. A., & Piantella, A. C. (2010). Convergence for summation methods with multipliers on the sphere. Numerical Functional Analysis and Optimization, 31( 6), 738-753. doi:10.1080/01630563.2010.494486 -
NLM
Menegatto VA, Piantella AC. Convergence for summation methods with multipliers on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2010 ; 31( 6): 738-753.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/01630563.2010.494486 -
Vancouver
Menegatto VA, Piantella AC. Convergence for summation methods with multipliers on the sphere [Internet]. Numerical Functional Analysis and Optimization. 2010 ; 31( 6): 738-753.[citado 2024 out. 31 ] Available from: https://doi.org/10.1080/01630563.2010.494486 - Interpolation using positive definite and conditionally negative definitive kernels
- Strictly positive definite kernels on compact two-point homogeneous spaces
- Annihilating properties of convolution operators on complex spheres
- Approximate solutions of equations defined by spherical multiplier operators
- A necessary and sufficient condition for strictly positive definite functions on spheres
- Strictly positive definite functions on the complex hilbert sphere
- Strictly positive definite kernels on subsets of the complex plane
- Positive definite kernels on complex spheres
- Conditionally positive definite kernels on euclidean domains
- Interpolation on the complex Hilbert sphere using positive definite and conditionally negative definite kernels
Informações sobre o DOI: 10.1080/01630563.2010.494486 (Fonte: oaDOI API)
How to cite
A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas