Filtros : "PROGRAMAÇÃO MATEMÁTICA" "Computational Optimization and Applications" Removido: "Financiado pela FAPES" Limpar

Filtros



Refine with date range


  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, MÉTODOS NUMÉRICOS, PROGRAMAÇÃO MATEMÁTICA

    Versão PublicadaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTÍNEZ, José Mário. Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, v. 83, p. 1-27, 2022Tradução . . Disponível em: https://doi.org/10.1007/s10589-022-00389-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martínez, J. M. (2022). Block coordinate descent for smooth nonconvex constrained minimization. Computational Optimization and Applications, 83, 1-27. doi:10.1007/s10589-022-00389-5
    • NLM

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
    • Vancouver

      Birgin EJG, Martínez JM. Block coordinate descent for smooth nonconvex constrained minimization [Internet]. Computational Optimization and Applications. 2022 ; 83 1-27.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-022-00389-5
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    Versão AceitaAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, L. F et al. An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-020-00180-4. Acesso em: 07 nov. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., Lara, F., & Rojas, F. N. (2020). An Augmented Lagrangian method for quasi-equilibrium problems. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-020-00180-4
    • NLM

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
    • Vancouver

      Bueno LF, Haeser G, Lara F, Rojas FN. An Augmented Lagrangian method for quasi-equilibrium problems [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 737-766.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-020-00180-4
  • Source: Computational Optimization and Applications. Conference titles: Brazilian Workshop on Continuous Optimization. Unidade: IME

    Assunto: PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BUENO, Luís Felipe e HAESER, Gabriel e SANTOS, Luiz-Rafael. Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. Disponível em: https://doi.org/10.1007/s10589-019-00161-2. Acesso em: 07 nov. 2025. , 2020
    • APA

      Bueno, L. F., Haeser, G., & Santos, L. -R. (2020). Towards an efficient augmented Lagrangian method for convex quadratic programming. Computational Optimization and Applications. New York: Instituto de Matemática e Estatística, Universidade de São Paulo. doi:10.1007/s10589-019-00161-2
    • NLM

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
    • Vancouver

      Bueno LF, Haeser G, Santos L-R. Towards an efficient augmented Lagrangian method for convex quadratic programming [Internet]. Computational Optimization and Applications. 2020 ; 76( 3): 767-800.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00161-2
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: OTIMIZAÇÃO MATEMÁTICA, PROGRAMAÇÃO MATEMÁTICA

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, v. 73, n. 3, p. 707-753, 2019Tradução . . Disponível em: https://doi.org/10.1007/s10589-019-00089-7. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., & Martinez, J. M. (2019). A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization. Computational Optimization and Applications, 73( 3), 707-753. doi:10.1007/s10589-019-00089-7
    • NLM

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
    • Vancouver

      Birgin EJG, Martinez JM. A Newton-like method with mixed factorizations and cubic regularization for unconstrained minimization [Internet]. Computational Optimization and Applications. 2019 ; 73( 3): 707-753.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-019-00089-7
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO MATEMÁTICA, PROGRAMAÇÃO NÃO LINEAR

    PrivadoAcesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      HAESER, Gabriel. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, v. 70, n. 2, p. 615–639, 2018Tradução . . Disponível em: https://doi.org/10.1007/s10589-018-0005-3. Acesso em: 07 nov. 2025.
    • APA

      Haeser, G. (2018). A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms. Computational Optimization and Applications, 70( 2), 615–639. doi:10.1007/s10589-018-0005-3
    • NLM

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
    • Vancouver

      Haeser G. A second-order optimality condition with first- and second-order complementarity associated with global convergence of algorithms [Internet]. Computational Optimization and Applications. 2018 ; 70( 2): 615–639.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-018-0005-3
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, OTIMIZAÇÃO MATEMÁTICA, PESQUISA OPERACIONAL, PROGRAMAÇÃO MATEMÁTICA

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e BUENO, L. F e MARTINEZ, José Mario. Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications, 2016Tradução . . Disponível em: https://doi.org/10.1007/s10589-016-9849-6. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Bueno, L. F., & Martinez, J. M. (2016). Sequential equality-constrained optimization for nonlinear programming. Computational Optimization and Applications. doi:10.1007/s10589-016-9849-6
    • NLM

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
    • Vancouver

      Birgin EJG, Bueno LF, Martinez JM. Sequential equality-constrained optimization for nonlinear programming [Internet]. Computational Optimization and Applications. 2016 ;[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-016-9849-6
  • Source: Computational Optimization and Applications. Unidade: IME

    Subjects: PROGRAMAÇÃO NÃO LINEAR, ALGORITMOS, PROGRAMAÇÃO MATEMÁTICA, CIÊNCIA DA COMPUTAÇÃO

    Acesso à fonteDOIHow to cite
    A citação é gerada automaticamente e pode não estar totalmente de acordo com as normas
    • ABNT

      BIRGIN, Ernesto Julian Goldberg e MARTINEZ, José Mario e PRUDENTE, Leandro da Fonseca. Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, v. 60, n. 3, p. 609-631, 2015Tradução . . Disponível em: https://doi.org/10.1007/s10589-014-9685-5. Acesso em: 07 nov. 2025.
    • APA

      Birgin, E. J. G., Martinez, J. M., & Prudente, L. da F. (2015). Optimality properties of an Augmented Lagrangian method on infeasible problems. Computational Optimization and Applications, 60( 3), 609-631. doi:10.1007/s10589-014-9685-5
    • NLM

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-014-9685-5
    • Vancouver

      Birgin EJG, Martinez JM, Prudente L da F. Optimality properties of an Augmented Lagrangian method on infeasible problems [Internet]. Computational Optimization and Applications. 2015 ; 60( 3): 609-631.[citado 2025 nov. 07 ] Available from: https://doi.org/10.1007/s10589-014-9685-5

Digital Library of Intellectual Production of Universidade de São Paulo     2012 - 2025